Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Vaccine ; 37(26): 3495-3504, 2019 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-31103366

RESUMO

The pneumococcus remains a common cause of otitis media (OM) despite the widespread introduction of pneumococcal conjugate vaccines. In mice, a pneumococcal whole cell vaccine (WCV) induces serotype-independent protection against pneumococcal colonisation and invasive disease via TH17- and antibody-mediated immunity, respectively. We investigated the effect of WCV on influenza A-induced pneumococcal OM in an infant mouse model. C57BL/6 mice were immunised subcutaneously with a single dose of WCV or adjuvant at 6 days of age, infected with pneumococci (EF3030 [serotype 19F] or PMP1106 [16F]) at 12 days of age, and given influenza A virus (A/Udorn/72/307 [H3N2], IAV) at 18 days of age to induce pneumococcal OM. Pneumococcal density in middle ear and nasopharyngeal tissues was determined 6 and 12 days post-virus. Experiments were repeated in antibody (B6.µMT-/-)- and CD4+ T-cell-deficient mice to investigate the immune responses involved. A single dose of WCV did not prevent the development of pneumococcal OM, nor accelerate pneumococcal clearance compared with mice receiving adjuvant alone. However, WCV reduced the density of EF3030 in the middle ear at 6 days post-viral infection (p = 0.022), and the density of both isolates in the nasopharynx at 12 days post-viral infection (EF3030, p = 0.035; PMP1106, p = 0.011), compared with adjuvant alone. The reduction in density in the middle ear required antibodies and CD4+ T cells: WCV did not reduce EF3030 middle ear density in B6.µMT-/- mice (p = 0.35) nor in wild-type mice given anti-CD4 monoclonal antibody before and after IAV inoculation (p = 0.91); and WCV-immunised CD4+ T cell-deficient GK1.5 mice had higher levels of EF3030 in the middle ear than their adjuvant-immunised counterparts (p = 0.044). A single subcutaneous dose of WCV reduced pneumococcal density in the middle ears of co-infected mice in one of two strains tested, but did not prevent OM from occurring in this animal model.


Assuntos
Vírus da Influenza A Subtipo H3N2/imunologia , Infecções por Orthomyxoviridae/imunologia , Otite Média/imunologia , Infecções Pneumocócicas/imunologia , Vacinas Pneumocócicas/imunologia , Adjuvantes Imunológicos/administração & dosagem , Animais , Portador Sadio/imunologia , Modelos Animais de Doenças , Orelha Média/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Nasofaringe , Sorogrupo , Vacinação/métodos , Vacinas Conjugadas/imunologia
2.
Mol Med ; 25(1): 12, 2019 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-30943912

RESUMO

BACKGROUND: The polymeric immunoglobulin receptor (pIgR) maintains the integrity of epithelial barriers by transporting polymeric antibodies and antigens through the epithelial mucosa into the lumen. In this study, we examined the role of pIgR in maintaining gut barrier integrity, which is important for the normal development in mice. METHODS: Cohorts of pIgR-/- mice and their wildtype controls were housed under Specific Pathogen Free (SPF) conditions and monitored for weight gain as an indicator of development over time. The general physiology of the gastrointestinal tract was analysed using immunohistochemistry in young (8-12 weeks of age) and aged mice (up to 18 months of age), and the observed immunopathology in pIgR-/- mice was further characterised using flow cytometry. Urinary metabolites were analysed using gas chromatography-mass spectrometry (GC-MS), which revealed changes in metabolites that correlated with age-related increase in gut permeability in pIgR-/- mice. RESULTS: We observed that pIgR-/- mice exhibited delayed growth, and this phenomenon is associated with low-grade gut inflammation that increased with ageing. The gross intraepithelial lymphocytic (IEL) infiltration characteristic of pIgR-/- mice was redefined as CD8α+αß+ T cells, the majority of which expressed high levels of CD103 and CD69 consistent with tissue resident memory T cells (TRM). Comparison of the urinary metabolome between pIgR-/- and wild-type mice revealed key changes in urinary biomarkers fucose, glycine and Vitamin B5, suggestive of altered mucosal permeability. A significant increase in gut permeability was confirmed by analysing the site-specific uptake of sugar probes in different parts of the intestine. CONCLUSION: Our data show that loss of the secretory antibody system in mice results in enhanced accumulation of inflammatory IELs in the gut, which likely reflects ongoing inflammation in reaction to gut microbiota or food antigens, leading to delayed growth in pIgR-/- mice. We demonstrate that this leads to the presence of a unique urinary metabolome profile, which may provide a biomarker for altered gut permeability.


Assuntos
Trato Gastrointestinal/imunologia , Linfócitos Intraepiteliais/imunologia , Metaboloma , Receptores de Imunoglobulina Polimérica/genética , Urina/química , Animais , Anticorpos/genética , Citocinas/sangue , Feminino , Trato Gastrointestinal/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout
3.
PLoS One ; 10(4): e0121979, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25835383

RESUMO

Selective breeding to introduce a gene mutation from one mouse strain onto the genetic background of another strain invariably produces "hitchhiking" (i.e. flanking) genomic intervals, which may independently affect a disease trait of interest. To investigate a role for the polymeric Ig receptor in autoimmune diabetes, a congenic nonobese diabetic (NOD) mouse strain was generated that harbors a Pigr null allele derived from C57BL/6 (B6) mice. These pIgR-deficient NOD mice exhibited increased serum IgA along with an increased diabetes incidence. However, the Pigr null allele was encompassed by a relatively large "hitchhiking" genomic interval that was derived from B6 mice and overlaps Idd5.4, a susceptibility locus for autoimmune diabetes. Additional congenic NOD mouse strains, harboring smaller B6-derived intervals, confirmed Idd5.4 independently of the other three known susceptibility loci on chromosome 1, and further localized Idd5.4 to an interval proximal to Pigr. Moreover, these congenic NOD mice showed that B6 mice harbor a more diabetogenic allele than NOD mice for this locus. The smallest B6-derived interval encompassing the Pigr null allele may, however, confer a small degree of protection against diabetes, but this protection appears to be dependent on the absence of the diabetogenic B6 allele for Idd5.4. This study provides another example of the potential hidden effects of "hitchhiking" genomic intervals and how such intervals can be used to localize disease susceptibility loci.


Assuntos
Cromossomos de Mamíferos/química , Diabetes Mellitus Tipo 1/genética , Loci Gênicos , Predisposição Genética para Doença , Genoma , Receptores de Imunoglobulina Polimérica/genética , Fatores Etários , Alelos , Animais , Mapeamento Cromossômico , Diabetes Mellitus Tipo 1/imunologia , Diabetes Mellitus Tipo 1/patologia , Modelos Animais de Doenças , Feminino , Humanos , Imunoglobulina A/sangue , Imunoglobulina A/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Camundongos Transgênicos , Receptores de Imunoglobulina Polimérica/deficiência , Receptores de Imunoglobulina Polimérica/imunologia
4.
J Bacteriol ; 196(16): 3036-44, 2014 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-24957617

RESUMO

Variable-number tandem repeats (VNTRs) mutate rapidly and can be useful markers for genotyping. While multilocus VNTR analysis (MLVA) is increasingly used in the detection and investigation of food-borne outbreaks caused by Salmonella enterica serovar Typhimurium (S. Typhimurium) and other bacterial pathogens, MLVA data analysis usually relies on simple clustering approaches that may lead to incorrect interpretations. Here, we estimated the rates of copy number change at each of the five loci commonly used for S. Typhimurium MLVA, during in vitro and in vivo passage. We found that loci STTR5, STTR6, and STTR10 changed during passage but STTR3 and STTR9 did not. Relative rates of change were consistent across in vitro and in vivo growth and could be accurately estimated from diversity measures of natural variation observed during large outbreaks. Using a set of 203 isolates from a series of linked outbreaks and whole-genome sequencing of 12 representative isolates, we assessed the accuracy and utility of several alternative methods for analyzing and interpreting S. Typhimurium MLVA data. We show that eBURST analysis was accurate and informative. For construction of MLVA-based trees, a novel distance metric, based on the geometric model of VNTR evolution coupled with locus-specific weights, performed better than the commonly used simple or categorical distance metrics. The data suggest that, for the purpose of identifying potential transmission clusters for further investigation, isolates whose profiles differ at one of the rapidly changing STTR5, STTR6, and STTR10 loci should be collapsed into the same cluster.


Assuntos
Análise por Conglomerados , DNA Bacteriano/genética , Repetições Minissatélites , Tipagem Molecular/métodos , Taxa de Mutação , Infecções por Salmonella/epidemiologia , Salmonella typhimurium/genética , Genoma Bacteriano , Genótipo , Epidemiologia Molecular/métodos , Infecções por Salmonella/microbiologia , Salmonella typhimurium/classificação
5.
Immunogenetics ; 66(7-8): 501-6, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24906421

RESUMO

The nonobese diabetic (NOD) mouse strain serves as a genomic standard for assessing how allelic variation for insulin-dependent diabetes (Idd) loci affects the development of autoimmune diabetes. We previously demonstrated that C57BL/6 (B6) mice harbor a more diabetogenic allele than NOD mice for the Idd14 locus when introduced onto the NOD genetic background. New congenic NOD mouse strains, harboring smaller B6-derived intervals on chromosome 13, now localize Idd14 to an ~18-Mb interval and reveal a new locus, Idd31. Notably, the B6 allele for Idd31 confers protection against diabetes, but only in the absence of the diabetogenic B6 allele for Idd14, indicating genetic epistasis between these two loci. Moreover, congenic mice that are more susceptible to diabetes are more resistant to Listeria monocytogenes infection. This result co-localizes Idd14 and Listr2, a resistance locus for listeriosis, to the same genomic interval and indicates that congenic NOD mice may also be useful for localizing resistance loci for infectious disease.


Assuntos
Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/imunologia , Epistasia Genética/imunologia , Listeriose/genética , Listeriose/imunologia , Alelos , Animais , Feminino , Predisposição Genética para Doença , Fenômenos Imunogenéticos , Camundongos , Camundongos Congênicos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD
6.
Immunology ; 143(4): 520-30, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24827556

RESUMO

Immunoglobulin A is an important mucosal antibody that can neutralize mucosal pathogens by either preventing attachment to epithelia (immune exclusion) or alternatively inhibit intra-epithelial replication following transcytosis by the polymeric immunoglobulin receptor (pIgR). Chlamydia trachomatis is a major human pathogen that initially targets the endocervical or urethral epithelium in women and men, respectively. As both tissues contain abundant secretory IgA (SIgA) we assessed the protection afforded by IgA targeting different chlamydial antigens expressed during the extra- and intra-epithelial stages of infection. We developed an in vitro model using polarizing cells expressing the murine pIgR together with antigen-specific mouse IgA, and an in vivo model using pIgR(-/-) mice. Secretory IgA targeting the extra-epithelial chlamydial antigen, the major outer membrane protein, significantly reduced infection in vitro by 24% and in vivo by 44%. Conversely, pIgR-mediated delivery of IgA targeting the intra-epithelial inclusion membrane protein A bound to the inclusion but did not reduce infection in vitro or in vivo. Similarly, intra-epithelial IgA targeting the secreted protease Chlamydia protease-like activity factor also failed to reduce infection. Together, these data suggest the importance of pIgR-mediated delivery of IgA targeting extra-epithelial, but not intra-epithelial, chlamydial antigens for protection against a genital tract infection.


Assuntos
Infecções por Chlamydia/imunologia , Chlamydia/imunologia , Imunoglobulina A Secretora/imunologia , Mucosa/imunologia , Animais , Especificidade de Anticorpos/imunologia , Antígenos de Bactérias/imunologia , Linhagem Celular , Infecções por Chlamydia/metabolismo , Chlamydia muridarum/imunologia , Modelos Animais de Doenças , Humanos , Imunoglobulina A Secretora/isolamento & purificação , Masculino , Camundongos , Camundongos Knockout , Mucosa/metabolismo , Receptores de Imunoglobulina Polimérica/genética , Receptores de Imunoglobulina Polimérica/metabolismo
7.
Infect Immun ; 82(1): 364-70, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24191297

RESUMO

Otitis media (OM) (a middle ear infection) is a common childhood illness that can leave some children with permanent hearing loss. OM can arise following infection with a variety of different pathogens, including a coinfection with influenza A virus (IAV) and Streptococcus pneumoniae (the pneumococcus). We and others have demonstrated that coinfection with IAV facilitates the replication of pneumococci in the middle ear. Specifically, we used a mouse model of OM to show that IAV facilitates the outgrowth of S. pneumoniae in the middle ear by inducing middle ear inflammation. Here, we seek to understand how the host inflammatory response facilitates bacterial outgrowth in the middle ear. Using B cell-deficient infant mice, we show that antibodies play a crucial role in facilitating pneumococcal replication. We subsequently show that this is due to antibody-dependent neutrophil extracellular trap (NET) formation in the middle ear, which, instead of clearing the infection, allows the bacteria to replicate. We further demonstrate the importance of these NETs as a potential therapeutic target through the transtympanic administration of a DNase, which effectively reduces the bacterial load in the middle ear. Taken together, these data provide novel insight into how pneumococci are able to replicate in the middle ear cavity and induce disease.


Assuntos
Anticorpos Antibacterianos/fisiologia , Anticorpos Antivirais/fisiologia , Coinfecção/microbiologia , Neutrófilos/fisiologia , Infecções por Orthomyxoviridae/imunologia , Otite Média/microbiologia , Infecções Pneumocócicas/imunologia , Streptococcus pneumoniae/imunologia , Animais , Carga Bacteriana , Coinfecção/virologia , Modelos Animais de Doenças , Orelha Média/microbiologia , Humanos , Vírus da Influenza A/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Infecções por Orthomyxoviridae/microbiologia , Otite Média/imunologia , Infecções Pneumocócicas/microbiologia , Streptococcus pneumoniae/crescimento & desenvolvimento
8.
Infect Immun ; 81(10): 3880-93, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23918779

RESUMO

The natural immune response to Helicobacter pylori neither clears infection nor prevents reinfection. However, the ability of secretory antibodies to influence the course of H. pylori infection has not been determined. We compared the natural progression of H. pylori infection in wild-type C57BL/6 mice with that in mice lacking the polymeric immunoglobulin receptor (pIgR) that is essential for the secretion of polymeric antibody across mucosal surfaces. H. pylori SS1-infected wild-type and pIgR knockout (KO) mice were sampled longitudinally for gastrointestinal bacterial load, antibody response, and histological changes. The gastric bacterial loads of wild-type and pIgR KO mice remained constant and comparable at up to 3 months postinfection (mpi) despite SS1-reactive secretory IgA in the intestinal contents of wild-type mice at that time. Conversely, abundant duodenal colonization of pIgR KO animals contrasted with the near-total eradication of H. pylori from the intestine of wild-type animals by 3 mpi. H. pylori was cultured only from the duodenum of those animals in which colonization in the distal gastric antrum was of sufficient density for immunohistological detection. By 6 mpi, the gastric load of H. pylori in wild-type mice was significantly lower than in pIgR KO animals. While there was no corresponding difference between the two mouse strains in gastric pathology results at 6 mpi, reductions in gastric bacterial load correlated with increased gastric inflammation together with an intestinal secretory antibody response in wild-type mice. Together, these results suggest that naturally produced secretory antibodies can modulate the progress of H. pylori infection, particularly in the duodenum.


Assuntos
Anticorpos Antibacterianos/metabolismo , Infecções por Helicobacter/imunologia , Helicobacter pylori , Imunidade nas Mucosas/fisiologia , Mucosa Intestinal/metabolismo , Animais , Western Blotting , Regulação da Expressão Gênica/imunologia , Imunoglobulina A/sangue , Imunoglobulina A/metabolismo , Imunoglobulina G/sangue , Imunoglobulina G/metabolismo , Mucosa Intestinal/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores de Imunoglobulina Polimérica/genética , Receptores de Imunoglobulina Polimérica/metabolismo
9.
Methods Mol Biol ; 1031: 125-44, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23824896

RESUMO

Listeria monocytogenes is a Gram-positive facultative intracellular bacterium that is widely used to characterize bacterial pathogenesis and host immunity. Here, we describe a set of basic methods and techniques to infect mice with L. monocytogenes, measure bacterial load in tissues, and analyze immune cell subsets responding to infection in the spleen and liver. In addition, a specialized method for immune cell depletion is incorporated within the overall protocol, along with suggestions at various points in the protocol for minimizing experimental variability in mouse infection studies using L. monocytogenes. Finally, we highlight a number of experimental strategies for which L. monocytogenes has facilitated research into host immune responses and bacterial pathogenesis.


Assuntos
Imunidade Ativa , Listeria monocytogenes/patogenicidade , Listeriose/microbiologia , Animais , Carga Bacteriana , Listeriose/patologia , Fígado/microbiologia , Camundongos , Baço/imunologia , Baço/microbiologia
10.
PLoS One ; 8(3): e59934, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23544110

RESUMO

Cholera toxin (CT) is a mucosal adjuvant capable of inducing strong immune responses to co-administered antigens following oral or intranasal immunization of mice. To date, the direct effect of CT on antigen-specific CD4(+) T cell migration and proliferation profiles in vivo is not well characterized. In this study, the effect of CT on the migration pattern and proliferative responses of adoptively transferred, CD4(+) TCR transgenic T cells in orally or intranasally vaccinated mice, was analyzed by flow cytometry. GFP-expressing or CFSE-labeled OT-II lymphocytes were adoptively transferred to naïve C57BL/6 mice, and mice were subsequently vaccinated with OVA with or without CT via the oral or intranasal route. CT did not alter the migration pattern of antigen-specific T cells, regardless of the route of immunization, but increased the number of transgenic CD4(+) T cells in draining lymphoid tissue. This increase in the number of transgenic CD4(+) T cells was not due to cells undergoing more rounds of cellular division in vivo, suggesting that CT may exert an indirect adjuvant effect on CD4(+) T cells. The findings reported here suggest that CT functions as a mucosal adjuvant by increasing the number of antigen specific CD4(+) T cells independent of their migration pattern or kinetics of cellular division.


Assuntos
Linfócitos T CD4-Positivos/citologia , Divisão Celular/imunologia , Movimento Celular/imunologia , Toxina da Cólera/administração & dosagem , Toxina da Cólera/farmacologia , Epitopos/imunologia , Mucosa/imunologia , Administração Intranasal , Administração Oral , Animais , Linfócitos T CD4-Positivos/efeitos dos fármacos , Linfócitos T CD4-Positivos/imunologia , Divisão Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Dendríticas/citologia , Células Dendríticas/efeitos dos fármacos , Azul Evans/metabolismo , Fluoresceínas/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Antígenos de Histocompatibilidade Classe II/metabolismo , Cinética , Contagem de Linfócitos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mucosa/efeitos dos fármacos , Ovalbumina/imunologia , Peptídeos/farmacologia , Succinimidas/metabolismo
11.
Virol J ; 10: 128, 2013 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-23617940

RESUMO

BACKGROUND: Otitis media (OM) affects ≥80% of children before the age of three. OM can arise following co-infection with influenza A virus (IAV) and the bacterium Streptococcus pneumoniae. We have previously shown that H3 IAV strains (such as Udorn/72) induced a higher rate of bacterial OM than H1 strains (such as PR8/34). This was associated with more efficient replication of H3 strains in the middle ear. FINDINGS: Here, we assess if the increased replication of IAV strains such as Udorn/72 in the middle ear is dependent upon the binding of the viral HA to α2,6-linked sialic acid. Using murine and in vitro models, the present study shows that recognition of α2,6-linked sialic acid was not required to facilitate bacterial OM. CONCLUSIONS: Taken together, these data suggest that other features of the HA mediate bacterial OM.


Assuntos
Vírus da Influenza A/fisiologia , Ácido N-Acetilneuramínico/metabolismo , Infecções por Orthomyxoviridae/complicações , Otite Média/patologia , Infecções Pneumocócicas/patologia , Tropismo Viral , Ligação Viral , Animais , Modelos Animais de Doenças , Camundongos , Camundongos Endogâmicos C57BL , Infecções por Orthomyxoviridae/virologia , Otite Média/microbiologia , Infecções Pneumocócicas/microbiologia , Streptococcus pneumoniae/patogenicidade , Replicação Viral
12.
Infect Immun ; 81(3): 645-52, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23319557

RESUMO

Influenza A virus (IAV) predisposes individuals to secondary infections with the bacterium Streptococcus pneumoniae (the pneumococcus). Infections may manifest as pneumonia, sepsis, meningitis, or otitis media (OM). It remains controversial as to whether secondary pneumococcal disease is due to the induction of an aberrant immune response or IAV-induced immunosuppression. Moreover, as the majority of studies have been performed in the context of pneumococcal pneumonia, it remains unclear how far these findings can be extrapolated to other pneumococcal disease phenotypes such as OM. Here, we used an infant mouse model, human middle ear epithelial cells, and a series of reverse-engineered influenza viruses to investigate how IAV promotes bacterial OM. Our data suggest that the influenza virus HA facilitates disease by inducing a proinflammatory response in the middle ear cavity in a replication-dependent manner. Importantly, our findings suggest that it is the inflammatory response to IAV infection that mediates pneumococcal replication. This study thus provides the first evidence that inflammation drives pneumococcal replication in the middle ear cavity, which may have important implications for the treatment of pneumococcal OM.


Assuntos
Inflamação/patologia , Infecções por Orthomyxoviridae/complicações , Otite Média/patologia , Infecções Pneumocócicas/patologia , Animais , Vírus da Influenza A/classificação , Interleucina-6/genética , Interleucina-6/metabolismo , Interleucina-8/genética , Interleucina-8/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/microbiologia , Infecções por Orthomyxoviridae/virologia , Otite Média/imunologia , Otite Média/microbiologia , Infecções Pneumocócicas/imunologia , Infecções Pneumocócicas/microbiologia , Carga Viral
13.
mBio ; 3(5)2012.
Artigo em Inglês | MEDLINE | ID: mdl-23015738

RESUMO

UNLABELLED: The transmission of the bacterium Streptococcus pneumoniae (the pneumococcus) marks the first step toward disease development. To date, our ability to prevent pneumococcal transmission has been limited by our lack of understanding regarding the factors which influence the spread of this pathogen. We have previously developed an infant mouse model of pneumococcal transmission which was strictly dependent on influenza A virus (IAV) coinfection of both the experimentally colonized "index mice" and the naive cohoused "contact mice." Here, we sought to use this model to further elucidate the factors which facilitate S. pneumoniae transmission. In the present report, we demonstrate that increasing the nasopharyngeal load of S. pneumoniae in the colonized index mice (via the depletion of neutrophils) and inducing a proinflammatory response in the naive cohoused contact mice (as demonstrated by cytokine production) facilitates S. pneumoniae transmission. Thus, these data provide the first insights into the factors that help mediate the spread of S. pneumoniae throughout the community. IMPORTANCE: Streptococcus pneumoniae (the pneumococcus) is a major cause of worldwide morbidity and mortality and is a leading cause of death among children under the age of five years. Transmission of S. pneumoniae marks the first step toward disease development. Therefore, understanding the factors that influence the spread of pneumococci throughout the community plays an essential role in preventing pneumococcal disease. We previously developed the first reproducible infant mouse model for pneumococcal transmission and showed that coinfection with influenza virus facilitates the spread of S. pneumoniae. Here, we show that increasing the bacterial load in the nasal cavity of colonized individuals as well as inducing an inflammatory response in naive "contact cases" facilitates the spread of pneumococci. Therefore, this study helps to identify the factors which must be inhibited in order to successfully prevent pneumococcal disease.


Assuntos
Carga Bacteriana , Nasofaringe/microbiologia , Nasofaringe/patologia , Infecções Pneumocócicas/microbiologia , Infecções Pneumocócicas/transmissão , Streptococcus pneumoniae/isolamento & purificação , Animais , Animais Recém-Nascidos , Modelos Animais de Doenças , Vírus da Influenza A/patogenicidade , Procedimentos de Redução de Leucócitos , Camundongos , Camundongos Endogâmicos C57BL , Neutrófilos/imunologia , Infecções por Orthomyxoviridae/complicações , Infecções Pneumocócicas/patologia
14.
Nat Immunol ; 13(2): 162-9, 2012 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-22231517

RESUMO

Memory T cells exert antigen-independent effector functions, but how these responses are regulated is unclear. We discovered an in vivo link between flagellin-induced NLRC4 inflammasome activation in splenic dendritic cells (DCs) and host protective interferon-γ (IFN-γ) secretion by noncognate memory CD8(+) T cells, which could be activated by Salmonella enterica serovar Typhimurium, Yersinia pseudotuberculosis and Pseudomonas aeruginosa. We show that CD8α(+) DCs were particularly efficient at sensing bacterial flagellin through NLRC4 inflammasomes. Although this activation released interleukin 18 (IL-18) and IL-1ß, only IL-18 was required for IFN-γ production by memory CD8(+) T cells. Conversely, only the release of IL-1ß, but not IL-18, depended on priming signals mediated by Toll-like receptors. These findings provide a comprehensive mechanistic framework for the regulation of noncognate memory T cell responses during bacterial immunity.


Assuntos
Proteínas Reguladoras de Apoptose/imunologia , Linfócitos T CD8-Positivos/imunologia , Proteínas de Ligação ao Cálcio/imunologia , Células Dendríticas/imunologia , Memória Imunológica , Inflamassomos/imunologia , Interferon gama/imunologia , Animais , Flagelina/imunologia , Interleucina-18/imunologia , Interleucina-1beta/imunologia , Interleucina-1beta/metabolismo , Camundongos , Infecções por Pseudomonas/imunologia , Pseudomonas aeruginosa/imunologia , Salmonelose Animal/imunologia , Salmonella typhimurium/imunologia , Transdução de Sinais/imunologia , Baço/imunologia , Receptores Toll-Like/imunologia , Infecções por Yersinia pseudotuberculosis/imunologia
15.
PLoS Pathog ; 7(8): e1002204, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21901098

RESUMO

Klebsiella pneumoniae causes significant morbidity and mortality worldwide, particularly amongst hospitalized individuals. The principle mechanism for pathogenesis in hospital environments involves the formation of biofilms, primarily on implanted medical devices. In this study, we constructed a transposon mutant library in a clinical isolate, K. pneumoniae AJ218, to identify the genes and pathways implicated in biofilm formation. Three mutants severely defective in biofilm formation contained insertions within the mrkABCDF genes encoding the main structural subunit and assembly machinery for type 3 fimbriae. Two other mutants carried insertions within the yfiN and mrkJ genes, which encode GGDEF domain- and EAL domain-containing c-di-GMP turnover enzymes, respectively. The remaining two isolates contained insertions that inactivated the mrkH and mrkI genes, which encode for novel proteins with a c-di-GMP-binding PilZ domain and a LuxR-type transcriptional regulator, respectively. Biochemical and functional assays indicated that the effects of these factors on biofilm formation accompany concomitant changes in type 3 fimbriae expression. We mapped the transcriptional start site of mrkA, demonstrated that MrkH directly activates transcription of the mrkA promoter and showed that MrkH binds strongly to the mrkA regulatory region only in the presence of c-di-GMP. Furthermore, a point mutation in the putative c-di-GMP-binding domain of MrkH completely abolished its function as a transcriptional activator. In vivo analysis of the yfiN and mrkJ genes strongly indicated their c-di-GMP-specific function as diguanylate cyclase and phosphodiesterase, respectively. In addition, in vitro assays showed that purified MrkJ protein has strong c-di-GMP phosphodiesterase activity. These results demonstrate for the first time that c-di-GMP can function as an effector to stimulate the activity of a transcriptional activator, and explain how type 3 fimbriae expression is coordinated with other gene expression programs in K. pneumoniae to promote biofilm formation to implanted medical devices.


Assuntos
Biofilmes , GMP Cíclico/análogos & derivados , Fímbrias Bacterianas/metabolismo , Klebsiella pneumoniae/genética , Ativação Transcricional , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , GMP Cíclico/genética , DNA Bacteriano/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Fímbrias Bacterianas/genética , Deleção de Genes , Regulação Bacteriana da Expressão Gênica , Klebsiella pneumoniae/crescimento & desenvolvimento , Klebsiella pneumoniae/metabolismo , Dados de Sequência Molecular , Diester Fosfórico Hidrolases/genética , Diester Fosfórico Hidrolases/metabolismo , Fósforo-Oxigênio Liases/genética , Fósforo-Oxigênio Liases/metabolismo , Plasmídeos , Ligação Proteica
16.
J Infect Dis ; 204(12): 1857-65, 2011 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-21930608

RESUMO

Otitis media (OM) is one of the most common childhood diseases. OM can arise when a viral infection enables bacteria to disseminate from the nasopharynx to the middle ear. Here, we provide the first infant murine model for disease. Mice coinfected with Streptococcus pneumoniae and influenza virus had high bacterial load in the middle ear, middle ear inflammation, and hearing loss. In contrast, mice colonized with S. pneumoniae alone had significantly less bacteria in the ear, minimal hearing loss, and no inflammation. Of interest, infection with influenza virus alone also caused some middle ear inflammation and hearing loss. Overall, this study provides a clinically relevant and easily accessible animal model to study the pathogenesis and prevention of OM. Moreover, we provide, to our knowledge, the first evidence that influenza virus alone causes middle ear inflammation in infant mice. This inflammation may then play an important role in the development of bacterial OM.


Assuntos
Potenciais Evocados Auditivos do Tronco Encefálico , Vírus da Influenza A , Infecções por Orthomyxoviridae/complicações , Otite Média/microbiologia , Streptococcus pneumoniae , Animais , Carga Bacteriana , Coinfecção , Modelos Animais de Doenças , Potenciais Evocados Auditivos do Tronco Encefálico/fisiologia , Medições Luminescentes , Camundongos , Camundongos Endogâmicos C57BL , Otite Média/patologia , Otite Média/fisiopatologia , Otite Média/virologia
17.
J Vis Exp ; (50)2011 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-21525841

RESUMO

During the 1918 influenza virus pandemic, which killed approximately 50 million people worldwide, the majority of fatalities were not the result of infection with influenza virus alone. Instead, most individuals are thought to have succumbed to a secondary bacterial infection, predominately caused by the bacterium Streptococcus pneumoniae (the pneumococcus). The synergistic relationship between infections caused by influenza virus and the pneumococcus has subsequently been observed during the 1957 Asian influenza virus pandemic, as well as during seasonal outbreaks of the virus (reviewed in (1, 2)). Here, we describe a protocol used to investigate the mechanism(s) that may be involved in increased morbidity as a result of concurrent influenza A virus and S. pneumoniae infection. We have developed an infant murine model to reliably and reproducibly demonstrate the effects of influenza virus infection of mice colonised with S. pneumoniae. Using this protocol, we have provided the first insight into the kinetics of pneumococcal transmission between co-housed, neonatal mice using in vivo imaging.


Assuntos
Modelos Animais de Doenças , Vírus da Influenza A/fisiologia , Medições Luminescentes/métodos , Infecções por Orthomyxoviridae/microbiologia , Infecções Pneumocócicas/microbiologia , Streptococcus pneumoniae/fisiologia , Animais , Animais Recém-Nascidos , Embrião de Galinha , Camundongos , Infecções por Orthomyxoviridae/virologia , Infecções Pneumocócicas/virologia
18.
Eur J Immunol ; 40(10): 2778-90, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21038469

RESUMO

Helicobacter pylori is recognised as the chief cause of chronic gastritis, ulcers and gastric cancer in humans. With increased incidence of treatment failure and antibiotic resistance, development of prophylactic or therapeutic vaccination is a desirable alternative. Although the results of vaccination studies in animal models have been promising, studies in human volunteers have revealed problems such as 'post-immunisation gastritis' and comparatively poor responses to vaccine antigens. The focus of this study was to compare the gastric and systemic cellular immune responses induced by recombinant attenuated Salmonella Typhimurium-based vaccination in the C57BL/6 model of H. pylori infection. Analysis of lymphocyte populations in the gastric mucosa, blood, spleen, paragastric LN and MLN revealed that the effects of vaccination were largely confined to the parenchymal stomach rather than lymphoid organs. Vaccine-induced protection was correlated with an augmented local recall response in the gastric mucosa, with increased proportions of CD4(+) T cells, neutrophils and reduced proportions of CD4(+) Treg. CD4(+) T cells isolated from the stomachs of vaccinated mice proliferated ex vivo in response to H. pylori antigen, and secreted Th1 cytokines, particularly IFN-γ. This detailed analysis of local gastric immune responses provides insight into the mechanism of vaccine-induced protection.


Assuntos
Vacinas Bacterianas/imunologia , Gastrite/microbiologia , Gastrite/prevenção & controle , Infecções por Helicobacter/imunologia , Infecções por Helicobacter/prevenção & controle , Helicobacter pylori/imunologia , Vacinação/métodos , Animais , Vacinas Bacterianas/administração & dosagem , Linfócitos T CD4-Positivos/imunologia , Proliferação de Células , Feminino , Citometria de Fluxo , Mucosa Gástrica/imunologia , Mucosa Gástrica/microbiologia , Gastrite/imunologia , Infecções por Helicobacter/microbiologia , Histocitoquímica , Memória Imunológica/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Estatísticas não Paramétricas , Células Th1/imunologia , Vacinas Atenuadas/administração & dosagem , Vacinas Atenuadas/imunologia
19.
Nat Rev Microbiol ; 8(9): 656-67, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20694027

RESUMO

The mucosal secretory immune system provides an important primary defence against disease, as studies of humans with mucosal humoral immunodeficiencies suggest that the absence of secretory immunoglobulin A leads to an increase in mucosal infections. However, the infection risks posed do not seem to provide the evolutionary drive to retain constitutive secretion of often 'hard won' protein, suggesting that secretory antibodies may have some other important function (or functions). This Review examines the evidence that secretory antibodies provide an important defence against infection in specific animal models and explores complementary explanations for the evolution of the secretory immune system.


Assuntos
Imunidade nas Mucosas , Imunoglobulina A Secretora/imunologia , Animais , Modelos Animais de Doenças , Humanos , Imunoglobulina A Secretora/genética , Síndromes de Imunodeficiência/imunologia , Síndromes de Imunodeficiência/microbiologia , Síndromes de Imunodeficiência/virologia , Camundongos , Mucosa/microbiologia , Mucosa/virologia
20.
Infect Immun ; 78(5): 2312-9, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20231415

RESUMO

Salmonella enterica serovar Typhimurium possesses a multi-copper-ion oxidase (multicopper oxidase), CueO (also known as CuiD), a periplasmic enzyme known to be required for resistance to copper ions. CueO from S. Typhimurium was expressed as a recombinant protein in Escherichia coli, and the purified protein exhibited a high cuprous oxidase activity. We have characterized an S. Typhimurium cueO mutant and confirmed that it is more sensitive to copper ions. Using a murine model of infection, it was observed that the cueO mutant was significantly attenuated, as indicated by reduced recovery of bacteria from liver and spleen, although there was no significant difference in recovery from Peyer's patches and mesenteric lymph nodes. However, the intracellular survival of the cueO mutant in unprimed or gamma-interferon-primed murine macrophages was not statistically different from that of wild-type Salmonella, suggesting that additional host factors are involved in clearance of the cueO mutant. Unlike a cueO mutant from E. coli, the S. Typhimurium cueO mutant did not show greater sensitivity to hydrogen peroxide and its sensitivity to copper ions was not affected by siderophores. Similarly, the S. Typhimurium cueO mutant was not rescued from copper ion toxicity by addition of the branched-chain amino acids and leucine.


Assuntos
Proteínas de Bactérias/metabolismo , Oxirredutases/metabolismo , Salmonella typhimurium/enzimologia , Salmonella typhimurium/patogenicidade , Fatores de Virulência/metabolismo , Animais , Proteínas de Bactérias/genética , Contagem de Colônia Microbiana , Cobre/toxicidade , Feminino , Humanos , Fígado/microbiologia , Linfonodos , Camundongos , Camundongos Endogâmicos C57BL , Oxirredutases/deficiência , Nódulos Linfáticos Agregados/microbiologia , Salmonelose Animal/microbiologia , Salmonelose Animal/patologia , Salmonella typhimurium/efeitos dos fármacos , Baço/microbiologia , Virulência , Fatores de Virulência/deficiência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA