Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neurotoxicology ; 55: 1-9, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27149913

RESUMO

Annual prevalence of the use of common illicit drugs and new psychoactive substances (NPS) is high, despite the often limited knowledge on the health risks of these substances. Recently, cortical cultures grown on multi-well microelectrode arrays (mwMEAs) have been used for neurotoxicity screening of chemicals, pharmaceuticals, and toxins with a high sensitivity and specificity. However, the use of mwMEAs to investigate the effects of illicit drugs on neuronal activity is largely unexplored. We therefore first characterised the cortical cultures using immunocytochemistry and show the presence of astrocytes, glutamatergic and GABAergic neurons. Neuronal activity is concentration-dependently affected following exposure to six neurotransmitters (glutamate, GABA, serotonin, dopamine, acetylcholine and nicotine). Most neurotransmitters inhibit neuronal activity, although glutamate and acetylcholine transiently increase activity at specific concentrations. These transient effects are not detected when activity is determined during the entire 30min exposure window, potentially resulting in false-negative results. As expected, exposure to the GABAA-receptor antagonist bicuculline increases neuronal activity. Exposure to a positive allosteric modulator of the GABAA-receptor (diazepam) or to glutamate receptor antagonists (CNQX and MK-801) reduces neuronal activity. Further, we demonstrate that exposure to common drugs (3,4-methylenedioxymethamphetamine (MDMA) and amphetamine) and NPS (1-(3-chlorophenyl)piperazine (mCPP), 4-fluoroamphetamine (4-FA) and methoxetamine (MXE)) decreases neuronal activity. MXE most potently inhibits neuronal activity with an IC50 of 0.5µM, whereas 4-FA is least potent with an IC50 of 113µM. Our data demonstrate the importance of analysing neuronal activity within different time windows during exposure to prevent false-negative results. We also show that cortical cultures grown on mwMEAs can successfully be applied to investigate the effects of different (illicit) drugs on neuronal activity. Compared to investigating multiple single endpoints for neurotoxicity or neuromodulation, such as receptor activation or calcium channel function, mwMEAs can provide information on integrated aspects of drug-induced neurotoxicity more rapidly. Therefore, this approach could contribute to a faster insight in possible health risks and shorten the regulation process.


Assuntos
Potenciais de Ação/efeitos dos fármacos , Drogas Ilícitas/toxicidade , Microeletrodos , Neurônios/efeitos dos fármacos , 6-Ciano-7-nitroquinoxalina-2,3-diona/farmacologia , Animais , Animais Recém-Nascidos , Astrócitos/efeitos dos fármacos , Córtex Cerebral/citologia , Maleato de Dizocilpina/farmacologia , Avaliação Pré-Clínica de Medicamentos/métodos , Antagonistas de Aminoácidos Excitatórios/farmacologia , GABAérgicos/farmacologia , Proteínas da Membrana Plasmática de Transporte de GABA/metabolismo , Proteína Glial Fibrilar Ácida/metabolismo , Ratos , Ratos Wistar , Fatores de Tempo , Tirosina 3-Mono-Oxigenase/metabolismo , Proteína Vesicular 1 de Transporte de Glutamato/metabolismo
2.
Toxicology ; 311(3): 124-34, 2013 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-23871856

RESUMO

The aryl hydrocarbon receptor (AhR) is involved in a wide variety of biological and toxicological responses, including neuroendocrine signaling. Due to the complexity of neuroendocrine pathways in e.g. the hypothalamus and pituitary, there are limited in vitro models available despite the strong demand for such systems to study and predict neuroendocrine effects of chemicals. In this study, the applicability of the AhR-expressing rat hypothalamic GnV-3 cell line was investigated as a novel model to screen for neuroendocrine effects of AhR ligands using 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) as reference compound. The qRT-PCR analyses demonstrated the presence of several sets of neurotransmitter receptors in the GnV-3 cells. TCDD (10nM) altered neurotransmitter signaling by up-regulation of glutamate (Grik2), gamma-amino butyric acid (Gabra2) and serotonin (Ht2C) receptor mRNA levels. However, no significant changes in basal and serotonin-evoked intracellular Ca(2+) concentration ([Ca(2+)]i) or serotonin release were observed. On the other hand, TCDD de-regulated period circadian protein homolog 1 (Per1) and gonadotropin releasing hormone (Gnrh) mRNA levels within a 24-h time period. Both Per1 and Gnrh genes displayed a similar mRNA expression pattern in GnV-3 cells. Moreover, the involvement of AhR in TCDD-induced alteration of Neuropeptide Y (Npy) gene expression was found and confirmed by using siRNA targeted against Ahr in GnV-3 cells. Overall, the combined results demonstrate that GnV-3 cells may be a suitable model to predict some mechanisms of action and effects of AhR ligands in the hypothalamus.


Assuntos
Poluentes Ambientais/toxicidade , Hipotálamo/metabolismo , Dibenzodioxinas Policloradas/toxicidade , Receptores de Hidrocarboneto Arílico/metabolismo , Animais , Linhagem Celular , Citocromo P-450 CYP1A1/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Hormônio Liberador de Gonadotropina/genética , Hipotálamo/citologia , Camundongos , Neuropeptídeo Y/genética , Proteínas Circadianas Period/genética , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/genética , Ratos , Receptores de Hidrocarboneto Arílico/agonistas , Receptores de Hidrocarboneto Arílico/genética , Serotonina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...