Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 109
Filtrar
1.
Bioengineering (Basel) ; 11(3)2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38534508

RESUMO

The implementation of three-dimensional tissue engineering concurrently with stem cell technology holds great promise for in vitro research in pharmacology and toxicology and modeling cardiac diseases, particularly for rare genetic and pediatric diseases for which animal models, immortal cell lines, and biopsy samples are unavailable. It also allows for a rapid assessment of phenotype-genotype relationships and tissue response to pharmacological manipulation. Mutations in the TSC1 and TSC2 genes lead to dysfunctional mTOR signaling and cause tuberous sclerosis complex (TSC), a genetic disorder that affects multiple organ systems, principally the brain, heart, skin, and kidneys. Here we differentiated healthy (CC3) and tuberous sclerosis (TSP8-15) human induced pluripotent stem cells (hiPSCs) into cardiomyocytes to create engineered cardiac tissue constructs (ECTCs). We investigated and compared their mechano-elastic properties and gene expression and assessed the effects of rapamycin, a potent inhibitor of the mechanistic target of rapamycin (mTOR). The TSP8-15 ECTCs had increased chronotropy compared to healthy ECTCs. Rapamycin induced positive inotropic and chronotropic effects (i.e., increased contractility and beating frequency, respectively) in the CC3 ECTCs but did not cause significant changes in the TSP8-15 ECTCs. A differential gene expression analysis revealed 926 up- and 439 down-regulated genes in the TSP8-15 ECTCs compared to their healthy counterparts. The application of rapamycin initiated the differential expression of 101 and 31 genes in the CC3 and TSP8-15 ECTCs, respectively. A gene ontology analysis showed that in the CC3 ECTCs, the positive inotropic and chronotropic effects of rapamycin correlated with positively regulated biological processes, which were primarily related to the metabolism of lipids and fatty and amino acids, and with negatively regulated processes, which were predominantly associated with cell proliferation and muscle and tissue development. In conclusion, this study describes for the first time an in vitro TSC cardiac tissue model, illustrates the response of normal and TSC ECTCs to rapamycin, and provides new insights into the mechanisms of TSC.

2.
J Am Soc Mass Spectrom ; 35(3): 542-550, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38310603

RESUMO

Automation is dramatically changing the nature of laboratory life science. Robotic lab hardware that can perform manual operations with greater speed, endurance, and reproducibility opens an avenue for faster scientific discovery with less time spent on laborious repetitive tasks. A major bottleneck remains in integrating cutting-edge laboratory equipment into automated workflows, notably specialized analytical equipment, which is designed for human usage. Here we present AutonoMS, a platform for automatically running, processing, and analyzing high-throughput mass spectrometry experiments. AutonoMS is currently written around an ion mobility mass spectrometry (IM-MS) platform and can be adapted to additional analytical instruments and data processing flows. AutonoMS enables automated software agent-controlled end-to-end measurement and analysis runs from experimental specification files that can be produced by human users or upstream software processes. We demonstrate the use and abilities of AutonoMS in a high-throughput flow-injection ion mobility configuration with 5 s sample analysis time, processing robotically prepared chemical standards and cultured yeast samples in targeted and untargeted metabolomics applications. The platform exhibited consistency, reliability, and ease of use while eliminating the need for human intervention in the process of sample injection, data processing, and analysis. The platform paves the way toward a more fully automated mass spectrometry analysis and ultimately closed-loop laboratory workflows involving automated experimentation and analysis coupled to AI-driven experimentation utilizing cutting-edge analytical instrumentation. AutonoMS documentation is available at https://autonoms.readthedocs.io.


Assuntos
Metabolômica , Software , Humanos , Reprodutibilidade dos Testes , Espectrometria de Massas , Automação
3.
Lab Chip ; 24(6): 1794-1807, 2024 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-38362777

RESUMO

Human microphysiological systems, such as organs on chips, are an emerging technology for modeling human physiology in a preclinical setting to understand the mechanism of action of drugs, to evaluate the efficacy of treatment options for human disease and impairment, and to assess drug toxicity. By using human cells co-cultured in three-dimensional constructs, organ chips can provide greater fidelity to the human cellular condition than their two-dimensional predecessors. However, with the rise of SARS-CoV-2 and the global COVID-19 pandemic, it became clear that many microphysiological systems were not compatible with or optimized for studies of infectious disease and operation in a Biosafety Level 3 (BSL-3) environment. Given that one of the early sites of SARS-CoV-2 infection is the airway, we created a human airway organ chip that could operate in a BSL-3 space with high throughput and minimal manipulation, while retaining the necessary physical and physiological components to recapitulate tissue response to infectious agents and the immune response to infection.


Assuntos
COVID-19 , Humanos , SARS-CoV-2 , Carga Viral , Pandemias , Imuno-Histoquímica , Citocinas , Dispositivos Lab-On-A-Chip
4.
Transl Vis Sci Technol ; 12(11): 28, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-38010283

RESUMO

Purpose: Cells grown in milliliter volume devices have difficulty measuring low-abundance secreted factors due to low resulting concentrations. Using microfluidic devices increases concentration; however, the constrained geometry makes phenotypic characterization with transepithelial electrical resistance more difficult and less reliable. Our device resolves this problem. Methods: We designed and built a novel microfluidic "Puck" assembly using laser-cut pieces from preformed sheets of silicone and commercial off-the-shelf parts. Transwell membranes containing polarized retinal pigment epithelial (RPE) cells were reversibly sealed within the Puck and used to study polarized protein secretion. Protein secretion from the apical and basal surfaces in response to hypoxic conditions was quantified using an immunoassay method. Computational fluid modeling was performed on the chamber design. Results: Under hypoxic culture conditions (7% O2), basal vascular endothelial growth factor (VEGF) secretion by polarized RPE cells increased significantly from 1.40 to 1.68 ng/mL over the first 2 hours (P < 0.0013) and remained stably elevated through 4 hours. Conversely, VEGF secretion from the apical side remained constant under the same hypoxic conditions. Conclusions: The Puck can be used to measure spatiotemporal protein secretion by polarized cells into apical and basal microniches in response to environmental conditions. Computational model results support the absence of biologically significant shear stress to the cells caused by the device. Translational Relevance: The Puck can be used validate the mature phenotypic health of autologous induced pluripotent stem cells (iPSC)-derived RPE cells prior to transplantation.


Assuntos
Microfluídica , Fator A de Crescimento do Endotélio Vascular , Células Epiteliais/metabolismo , Pigmentos da Retina
5.
J Clin Invest ; 133(19)2023 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-37581931

RESUMO

Targeting host factors exploited by multiple viruses could offer broad-spectrum solutions for pandemic preparedness. Seventeen candidates targeting diverse functions emerged in a screen of 4,413 compounds for SARS-CoV-2 inhibitors. We demonstrated that lapatinib and other approved inhibitors of the ErbB family of receptor tyrosine kinases suppress replication of SARS-CoV-2, Venezuelan equine encephalitis virus (VEEV), and other emerging viruses with a high barrier to resistance. Lapatinib suppressed SARS-CoV-2 entry and later stages of the viral life cycle and showed synergistic effect with the direct-acting antiviral nirmatrelvir. We discovered that ErbB1, ErbB2, and ErbB4 bind SARS-CoV-2 S1 protein and regulate viral and ACE2 internalization, and they are required for VEEV infection. In human lung organoids, lapatinib protected from SARS-CoV-2-induced activation of ErbB-regulated pathways implicated in non-infectious lung injury, proinflammatory cytokine production, and epithelial barrier injury. Lapatinib suppressed VEEV replication, cytokine production, and disruption of blood-brain barrier integrity in microfluidics-based human neurovascular units, and reduced mortality in a lethal infection murine model. We validated lapatinib-mediated inhibition of ErbB activity as an important mechanism of antiviral action. These findings reveal regulation of viral replication, inflammation, and tissue injury via ErbBs and establish a proof of principle for a repurposed, ErbB-targeted approach to combat emerging viruses.


Assuntos
COVID-19 , Hepatite C Crônica , Animais , Humanos , Camundongos , Antivirais/farmacologia , Citocinas , Inflamação/tratamento farmacológico , Lapatinib/farmacologia , SARS-CoV-2
6.
bioRxiv ; 2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-34159337

RESUMO

Targeting host factors exploited by multiple viruses could offer broad-spectrum solutions for pandemic preparedness. Seventeen candidates targeting diverse functions emerged in a screen of 4,413 compounds for SARS-CoV-2 inhibitors. We demonstrated that lapatinib and other approved inhibitors of the ErbB family receptor tyrosine kinases suppress replication of SARS-CoV-2, Venezuelan equine encephalitis virus (VEEV), and other emerging viruses with a high barrier to resistance. Lapatinib suppressed SARS-CoV-2 entry and later stages of the viral life cycle and showed synergistic effect with the direct-acting antiviral nirmatrelvir. We discovered that ErbB1, 2 and 4 bind SARS-CoV-2 S1 protein and regulate viral and ACE2 internalization, and they are required for VEEV infection. In human lung organoids, lapatinib protected from SARS-CoV-2-induced activation of ErbB-regulated pathways implicated in non-infectious lung injury, pro-inflammatory cytokine production, and epithelial barrier injury. Lapatinib suppressed VEEV replication, cytokine production and disruption of the blood-brain barrier integrity in microfluidic-based human neurovascular units, and reduced mortality in a lethal infection murine model. We validated lapatinib-mediated inhibition of ErbB activity as an important mechanism of antiviral action. These findings reveal regulation of viral replication, inflammation, and tissue injury via ErbBs and establish a proof-of-principle for a repurposed, ErbB-targeted approach to combat emerging viruses.

7.
bioRxiv ; 2023 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-38168450

RESUMO

Tuberous sclerosis complex (TSC) is a multi-system genetic disease that causes benign tumors in the brain and other vital organs. The most debilitating symptoms result from involvement of the central nervous system and lead to a multitude of severe symptoms including seizures, intellectual disability, autism, and behavioral problems. TSC is caused by heterozygous mutations of either the TSC1 or TSC2 gene. Dysregulation of mTOR kinase with its multifaceted downstream signaling alterations is central to disease pathogenesis. Although the neurological sequelae of the disease are well established, little is known about how these mutations might affect cellular components and the function of the blood-brain barrier (BBB). We generated disease-specific cell models of the BBB by leveraging human induced pluripotent stem cell and microfluidic cell culture technologies. Using these microphysiological systems, we demonstrate that the BBB generated from TSC2 heterozygous mutant cells shows increased permeability which can be rescued by wild type astrocytes and with treatment with rapamycin, an mTOR kinase inhibitor. Our results further demonstrate the utility of microphysiological systems to study human neurological disorders and advance our knowledge of the cell lineages contributing to TSC pathogenesis.

8.
Viruses ; 14(12)2022 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-36560802

RESUMO

The blood brain barrier (BBB) is a multicellular microenvironment that plays an important role in regulating bidirectional transport to and from the central nervous system (CNS). Infections by many acutely infectious viruses such as alphaviruses and flaviviruses are known to impact the integrity of the endothelial lining of the BBB. Infection by Venezuelan Equine Encephalitis Virus (VEEV) through the aerosol route causes significant damage to the integrity of the BBB, which contributes to long-term neurological sequelae. An effective therapeutic intervention strategy should ideally not only control viral load in the host, but also prevent and/or reverse deleterious events at the BBB. Two dimensional monocultures, including trans-well models that use endothelial cells, do not recapitulate the intricate multicellular environment of the BBB. Complex in vitro organ-on-a-chip models (OOC) provide a great opportunity to introduce human-like experimental models to understand the mechanistic underpinnings of the disease state and evaluate the effectiveness of therapeutic candidates in a highly relevant manner. Here we demonstrate the utility of a neurovascular unit (NVU) in analyzing the dynamics of infection and proinflammatory response following VEEV infection and therapeutic effectiveness of omaveloxolone to preserve BBB integrity and decrease viral and inflammatory load.


Assuntos
Vírus da Encefalite Equina Venezuelana , Encefalomielite Equina Venezuelana , Humanos , Animais , Cavalos , Vírus da Encefalite Equina Venezuelana/fisiologia , Barreira Hematoencefálica , Encefalomielite Equina Venezuelana/tratamento farmacológico , Encefalomielite Equina Venezuelana/prevenção & controle , Células Endoteliais , Sistemas Microfisiológicos
9.
iScience ; 25(11): 105341, 2022 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-36339253

RESUMO

Technological advances have made it feasible to collect multi-condition multi-omic time courses of cellular response to perturbation, but the complexity of these datasets impedes discovery due to challenges in data management, analysis, visualization, and interpretation. Here, we report a whole-cell mechanistic analysis of HL-60 cellular response to bendamustine. We integrate both enrichment and network analysis to show the progression of DNA damage and programmed cell death over time in molecular, pathway, and process-level detail using an interactive analysis framework for multi-omics data. Our framework, Mechanism of Action Generator Involving Network analysis (MAGINE), automates network construction and enrichment analysis across multiple samples and platforms, which can be integrated into our annotated gene-set network to combine the strengths of networks and ontology-driven analysis. Taken together, our work demonstrates how multi-omics integration can be used to explore signaling processes at various resolutions and demonstrates multi-pathway involvement beyond the canonical bendamustine mechanism.

10.
PLoS Biol ; 20(5): e3001624, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35617197

RESUMO

Test compounds used on in vitro model systems are conventionally delivered to cell culture wells as fixed concentration bolus doses; however, this poorly replicates the pharmacokinetic (PK) concentration changes seen in vivo and reduces the predictive value of the data. Herein, proof-of-concept experiments were performed using a novel microfluidic device, the Microformulator, which allows in vivo like PK profiles to be applied to cells cultured in microtiter plates and facilitates the investigation of the impact of PK on biological responses. We demonstrate the utility of the device in its ability to reproduce in vivo PK profiles of different oncology compounds over multiweek experiments, both as monotherapy and drug combinations, comparing the effects on tumour cell efficacy in vitro with efficacy seen in in vivo xenograft models. In the first example, an ERK1/2 inhibitor was tested using fixed bolus dosing and Microformulator-replicated PK profiles, in 2 cell lines with different in vivo sensitivities. The Microformulator-replicated PK profiles were able to discriminate between cell line sensitivities, unlike the conventional fixed bolus dosing. In a second study, murine in vivo PK profiles of multiple Poly(ADP-Ribose) Polymerase 1/2 (PARP) and DNA-dependent protein kinase (DNA-PK) inhibitor combinations were replicated in a FaDu cell line resulting in a reduction in cell growth in vitro with similar rank ordering to the in vivo xenograft model. Additional PK/efficacy insight into theoretical changes to drug exposure profiles was gained by using the Microformulator to expose FaDu cells to the DNA-PK inhibitor for different target coverage levels and periods of time. We demonstrate that the Microformulator enables incorporating PK exposures into cellular assays to improve in vitro-in vivo translation understanding for early therapeutic insight.


Assuntos
Técnicas de Cultura de Células , Microfluídica , Animais , DNA , Humanos , Camundongos , Modelos Biológicos
11.
Lab Chip ; 21(24): 4814-4822, 2021 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-34787148

RESUMO

Fabrication of microfluidic devices by photolithography generally requires specialized training and access to a cleanroom. As an alternative, 3D printing enables cost-effective fabrication of microdevices with complex features that would be suitable for many biomedical applications. However, commonly used resins are cytotoxic and unsuitable for devices involving cells. Furthermore, 3D prints are generally refractory to elastomer polymerization such that they cannot be used as master molds for fabricating devices from polymers (e.g. polydimethylsiloxane, or PDMS). Different post-print treatment strategies, such as heat curing, ultraviolet light exposure, and coating with silanes, have been explored to overcome these obstacles, but none have proven universally effective. Here, we show that deposition of a thin layer of parylene, a polymer commonly used for medical device applications, renders 3D prints biocompatible and allows them to be used as master molds for elastomeric device fabrication. When placed in culture dishes containing human neurons, regardless of resin type, uncoated 3D prints leached toxic material to yield complete cell death within 48 hours, whereas cells exhibited uniform viability and healthy morphology out to 21 days if the prints were coated with parylene. Diverse PDMS devices of different shapes and sizes were easily cast from parylene-coated 3D printed molds without any visible defects. As a proof-of-concept, we rapid prototyped and tested different types of PDMS devices, including triple chamber perfusion chips, droplet generators, and microwells. Overall, we suggest that the simplicity and reproducibility of this technique will make it attractive for fabricating traditional microdevices and rapid prototyping new designs. In particular, by minimizing user intervention on the fabrication and post-print treatment steps, our strategy could help make microfluidics more accessible to the biomedical research community.


Assuntos
Dispositivos Lab-On-A-Chip , Polímeros , Técnicas de Cultura de Células , Humanos , Reprodutibilidade dos Testes , Xilenos
12.
Sens Actuators B Chem ; 3412021 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-34092923

RESUMO

There is a need for valves and pumps that operate at the microscale with precision and accuracy, are versatile in their application, and are easily fabricated. To that end, we developed a new rotary planar multiport valve to faithfully select solutions (contamination = 5.22 ± 0.06 ppb) and a rotary planar peristaltic pump to precisely control fluid delivery (flow rate = 2.4 ± 1.7 to 890 ± 77 µL/min). Both the valve and pump were implemented in a planar format amenable to single-layer soft lithographic fabrication. These planar microfluidics were actuated by a rotary motor controlled remotely by custom software. Together, these two devices constitute an innovative microformulator that was used to prepare precise, high-fidelity mixtures of up to five solutions (deviation from prescribed mixture = ±|0.02 ± 0.02| %). This system weighed less than a kilogram, occupied around 500 cm3, and generated pressures of 255 ± 47 kPa. This microformulator was then combined with an electrochemical sensor creating a microclinical analyzer (µCA) for detecting glutamate in real time. Using the chamber of the µCA as an in-line bioreactor, we compared glutamate homeostasis in human astrocytes differentiated from human-induced pluripotent stem cells (hiPSCs) from a control subject (CC-3) and a Tuberous Sclerosis Complex (TSC) patient carrying a pathogenic TSC2 mutation. When challenged with glutamate, TSC astrocytes took up less glutamate than control cells. These data validate the analytical power of the µCA and the utility of the microformulator by leveraging it to assess disease-related alterations in cellular homeostasis.

13.
FASEB J ; 34(12): 15946-15960, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33015868

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the cause of the global pandemic of coronavirus disease-2019 (COVID-19). SARS-CoV-2 is a zoonotic disease, but little is known about variations in species susceptibility that could identify potential reservoir species, animal models, and the risk to pets, wildlife, and livestock. Certain species, such as domestic cats and tigers, are susceptible to SARS-CoV-2 infection, while other species such as mice and chickens are not. Most animal species, including those in close contact with humans, have unknown susceptibility. Hence, methods to predict the infection risk of animal species are urgently needed. SARS-CoV-2 spike protein binding to angiotensin-converting enzyme 2 (ACE2) is critical for viral cell entry and infection. Here we integrate species differences in susceptibility with multiple in-depth structural analyses to identify key ACE2 amino acid positions including 30, 83, 90, 322, and 354 that distinguish susceptible from resistant species. Using differences in these residues across species, we developed a susceptibility score that predicts an elevated risk of SARS-CoV-2 infection for multiple species including horses and camels. We also demonstrate that SARS-CoV-2 is nearly optimal for binding ACE2 of humans compared to other animals, which may underlie the highly contagious transmissibility of this virus among humans. Taken together, our findings define potential ACE2 and SARS-CoV-2 residues for therapeutic targeting and identification of animal species on which to focus research and protection measures for environmental and public health.


Assuntos
Enzima de Conversão de Angiotensina 2/química , COVID-19/genética , Predisposição Genética para Doença , Receptores Virais/química , Sequência de Aminoácidos , Enzima de Conversão de Angiotensina 2/genética , Animais , Camelus , Glicosilação , Cavalos , Humanos , Modelos Moleculares , Filogenia , Ligação Proteica , Estrutura Terciária de Proteína , Receptores Virais/genética , SARS-CoV-2 , Alinhamento de Sequência , Especificidade da Espécie
14.
Fluids Barriers CNS ; 17(1): 38, 2020 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-32493346

RESUMO

BACKGROUND: The United States faces a national crisis involving opioid medications, where currently more than 130 people die every day. To combat this epidemic, a better understanding is needed of how opioids penetrate into the central nervous system (CNS) to facilitate pain relief and, potentially, result in addiction and/or misuse. Animal models, however, are a poor predictor of blood-brain barrier (BBB) transport and CNS drug penetration in humans, and many traditional 2D cell culture models of the BBB and neurovascular unit have inadequate barrier function and weak or inappropriate efflux transporter expression. Here, we sought to better understand opioid transport mechanisms using a simplified microfluidic neurovascular unit (NVU) model consisting of human brain microvascular endothelial cells (BMECs) co-cultured with astrocytes. METHODS: Human primary and induced pluripotent stem cell (iPSC)-derived BMECs were incorporated into a microfluidic NVU model with several technical improvements over our previous design. Passive barrier function was assessed by permeability of fluorescent dextrans with varying sizes, and P-glycoprotein function was assessed by rhodamine permeability in the presence or absence of inhibitors; quantification was performed with a fluorescent plate reader. Loperamide, morphine, and oxycodone permeability was assessed in the presence or absence of P-glycoprotein inhibitors and cortisol; quantification was performed with mass spectrometry. RESULTS: We first report technical and methodological optimizations to our previously described microfluidic model using primary human BMECs, which results in accelerated barrier formation, decreased variability, and reduced passive permeability relative to Transwell models. We then demonstrate proper transport and efflux of loperamide, morphine, and oxycodone in the microfluidic NVU containing BMECs derived from human iPSCs. We further demonstrate that cortisol can alter permeability of loperamide and morphine in a divergent manner. CONCLUSIONS: We reveal a novel role for the stress hormone cortisol in modulating the transport of opioids across the BBB, which could contribute to their abuse or overdose. Our updated BBB model represents a powerful tool available to researchers, clinicians, and drug manufacturers for understanding the mechanisms by which opioids access the CNS.


Assuntos
Analgésicos Opioides/farmacocinética , Astrócitos/fisiologia , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/fisiologia , Células Endoteliais/fisiologia , Hidrocortisona/metabolismo , Células-Tronco Pluripotentes Induzidas/fisiologia , Modelos Neurológicos , Astrócitos/efeitos dos fármacos , Células Cultivadas , Técnicas de Cocultura , Células Endoteliais/efeitos dos fármacos , Humanos , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Microvasos/citologia
15.
Clin Pharmacol Ther ; 108(5): 929-948, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32347548

RESUMO

The complexity of integrating microbiota into clinical pharmacology, environmental toxicology, and opioid studies arises from bidirectional and multiscale interactions between humans and their many microbiota, notably those of the gut. Hosts and each microbiota are governed by distinct central dogmas, with genetics influencing transcriptomics, proteomics, and metabolomics. Each microbiota's metabolome differentially modulates its own and the host's multi-omics. Exogenous compounds (e.g., drugs and toxins), often affect host multi-omics differently than microbiota multi-omics, shifting the balance between drug efficacy and toxicity. The complexity of the host-microbiota connection has been informed by current methods of in vitro bacterial cultures and in vivo mouse models, but they fail to elucidate mechanistic details. Together, in vitro organ-on-chip microphysiological models, multi-omics, and in silico computational models have the potential to supplement the established methods to help clinical pharmacologists and environmental toxicologists unravel the myriad of connections between the gut microbiota and host health and disease.


Assuntos
Bactérias/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Microbioma Gastrointestinal/efeitos dos fármacos , Genômica , Intestinos/microbiologia , Fígado/efeitos dos fármacos , Metabolômica , Procedimentos Analíticos em Microchip , Animais , Bactérias/metabolismo , Encéfalo/metabolismo , Simulação por Computador , Dieta/efeitos adversos , Interações Hospedeiro-Patógeno , Humanos , Dispositivos Lab-On-A-Chip , Fígado/metabolismo , Metaboloma , Modelos Animais , Modelos Biológicos
16.
Stem Cell Reports ; 12(6): 1380-1388, 2019 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-31189096

RESUMO

Human induced pluripotent stem cell (iPSC)-derived developmental lineages are key tools for in vitro mechanistic interrogations, drug discovery, and disease modeling. iPSCs have previously been differentiated to endothelial cells with blood-brain barrier (BBB) properties, as defined by high transendothelial electrical resistance (TEER), low passive permeability, and active transporter functions. Typical protocols use undefined components, which impart unacceptable variability on the differentiation process. We demonstrate that replacement of serum with fully defined components, from common medium supplements to a simple mixture of insulin, transferrin, and selenium, yields BBB endothelium with TEER in the range of 2,000-8,000 Ω × cm2 across multiple iPSC lines, with appropriate marker expression and active transporters. The use of a fully defined medium vastly improves the consistency of differentiation, and co-culture of BBB endothelium with iPSC-derived astrocytes produces a robust in vitro neurovascular model. This defined differentiation scheme should broadly enable the use of human BBB endothelium for diverse applications.


Assuntos
Barreira Hematoencefálica/metabolismo , Técnicas de Cultura de Células , Diferenciação Celular , Células Endoteliais/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Barreira Hematoencefálica/citologia , Meios de Cultura , Células Endoteliais/citologia , Humanos , Células-Tronco Pluripotentes Induzidas/citologia
17.
Biomicrofluidics ; 12(3): 034102, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29774083

RESUMO

The interaction of cancer cells with the stromal cells and matrix in the tumor microenvironment plays a key role in progression to metastasis. A better understanding of the mechanisms underlying these interactions would aid in developing new therapeutic approaches to inhibit this progression. Here, we describe the fabrication of a simple microfluidic bioreactor capable of recapitulating the three-dimensional breast tumor microenvironment. Cancer cell spheroids, fibroblasts, and endothelial cells co-cultured in this device create a robust microenvironment suitable for studying in real time the migration of cancer cells along matrix structures laid down by fibroblasts within the 3D tumor microenvironment. This system allows for ready evaluation of response to targeted therapy.

18.
Exp Biol Med (Maywood) ; 242(17): 1714-1731, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-29065796

RESUMO

Organs-on-Chips (OoCs) are poised to reshape dramatically the study of biology by replicating in vivo the function of individual and coupled human organs. Such microphysiological systems (MPS) have already recreated complex physiological responses necessary to simulate human organ function not evident in two-dimensional in vitro biological experiments. OoC researchers hope to streamline pharmaceutical development, accelerate toxicology studies, limit animal testing, and provide new insights beyond the capability of current biological models. However, to develop a physiologically accurate Human-on-a-Chip, i.e., an MPS homunculus that functions as an interconnected, whole-body, model organ system, one must couple individual OoCs with proper fluidic and metabolic scaling. This will enable the study of the effects of organ-organ interactions on the metabolism of drugs and toxins. Critical to these efforts will be the recapitulation of the complex physiological signals that regulate the endocrine, metabolic, and digestive systems. To date, with the exception of research focused on reproductive organs on chips, most OoC research ignores homuncular endocrine regulation, in particular the circadian rhythms that modulate the function of all organ systems. We outline the importance of cyclic endocrine regulation and the role that it may play in the development of MPS homunculi for the pharmacology, toxicology, and systems biology communities. Moreover, we discuss the critical end-organ hormone interactions that are most relevant for a typical coupled-OoC system, and the possible research applications of a missing endocrine system MicroFormulator (MES-µF) that could impose biological rhythms on in vitro models. By linking OoCs together through chemical messenger systems, advanced physiological phenomena relevant to pharmacokinetics and pharmacodynamics studies can be replicated. The concept of a MES-µF could be applied to other standard cell-culture systems such as well plates, thereby extending the concept of circadian hormonal regulation to much of in vitro biology. Impact statement Historically, cyclic endocrine modulation has been largely ignored within in vitro cell culture, in part because cultured cells typically have their media changed every day or two, precluding hourly adjustment of hormone concentrations to simulate circadian rhythms. As the Organ-on-Chip (OoC) community strives for greater physiological realism, the contribution of hormonal oscillations toward regulation of organ systems has been examined only in the context of reproductive organs, and circadian variation of the breadth of other hormones on most organs remains unaddressed. We illustrate the importance of cyclic endocrine modulation and the role that it plays within individual organ systems. The study of cyclic endocrine modulation within OoC systems will help advance OoC research to the point where it can reliably replicate in vitro key regulatory components of human physiology. This will help translate OoC work into pharmaceutical applications and connect the OoC community with the greater pharmacology and physiology communities.


Assuntos
Relógios Circadianos/fisiologia , Ritmo Circadiano/fisiologia , Glândulas Endócrinas/fisiologia , Procedimentos Analíticos em Microchip/métodos , Sistemas Neurossecretores/fisiologia , Humanos , Dispositivos Lab-On-A-Chip , Modelos Biológicos
19.
Exp Biol Med (Maywood) ; 242(16): 1559-1572, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-29065799

RESUMO

Microphysiological systems (MPS), which include engineered organoids (EOs), single organ/tissue chips (TCs), and multiple organs interconnected to create miniature in vitro models of human physiological systems, are rapidly becoming effective tools for drug development and the mechanistic understanding of tissue physiology and pathophysiology. The second MPS thematic issue of Experimental Biology and Medicine comprises 15 articles by scientists and engineers from the National Institutes of Health, the IQ Consortium, the Food and Drug Administration, and Environmental Protection Agency, an MPS company, and academia. Topics include the progress, challenges, and future of organs-on-chips, dissemination of TCs into Pharma, children's health protection, liver zonation, liver chips and their coupling to interconnected systems, gastrointestinal MPS, maturation of immature cardiomyocytes in a heart-on-a-chip, coculture of multiple cell types in a human skin construct, use of synthetic hydrogels to create EOs that form neural tissue models, the blood-brain barrier-on-a-chip, MPS models of coupled female reproductive organs, coupling MPS devices to create a body-on-a-chip, and the use of a microformulator to recapitulate endocrine circadian rhythms. While MPS hardware has been relatively stable since the last MPS thematic issue, there have been significant advances in cell sourcing, with increased reliance on human-induced pluripotent stem cells, and in characterization of the genetic and functional cell state in MPS bioreactors. There is growing appreciation of the need to minimize perfusate-to-cell-volume ratios and respect physiological scaling of coupled TCs. Questions asked by drug developers are followed by an analysis of the potential value, costs, and needs of Pharma. Of highest value and lowest switching costs may be the development of MPS disease models to aid in the discovery of disease mechanisms; novel compounds including probes, leads, and clinical candidates; and mechanism of action of drug candidates. Impact statement Microphysiological systems (MPS), which include engineered organoids and both individual and coupled organs-on-chips and tissue chips, are a rapidly growing topic of research that addresses the known limitations of conventional cellular monoculture on flat plastic - a well-perfected set of techniques that produces reliable, statistically significant results that may not adequately represent human biology and disease. As reviewed in this article and the others in this thematic issue, MPS research has made notable progress in the past three years in both cell sourcing and characterization. As the field matures, currently identified challenges are being addressed, and new ones are being recognized. Building upon investments by the Defense Advanced Research Projects Agency, National Institutes of Health, Food and Drug Administration, Defense Threat Reduction Agency, and Environmental Protection Agency of more than $200 million since 2012 and sizable corporate spending, academic and commercial players in the MPS community are demonstrating their ability to meet the translational challenges required to apply MPS technologies to accelerate drug development and advance toxicology.


Assuntos
Dispositivos Lab-On-A-Chip , Procedimentos Analíticos em Microchip/métodos , Microfluídica/métodos , Engenharia Tecidual/métodos , Avaliação Pré-Clínica de Medicamentos/métodos , Humanos , Células-Tronco Pluripotentes Induzidas/fisiologia , Microfluídica/instrumentação
20.
Future Sci OA ; 3(2): FSO163, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28670462

RESUMO

John Wikswo talks to Francesca Lake, Managing Editor: John is the founding Director of the Vanderbilt Institute for Integrative Biosystems Research and Education (VIIBRE). He is also the Gordon A Cain University Professor; a B learned Professor of Living State Physics; and a Professor of Biomedical Engineering, Molecular Physiology and Biophysics, and Physics. John earned his PhD in physics at Stanford University (CA, USA). After serving as a Research Fellow in Cardiology at Stanford, he joined the Department of Physics and Astronomy at Vanderbilt University (TN, USA), where he went on to make the first measurement of the magnetic field of an isolated nerve. He founded VIIBRE at Vanderbilt in 2001 in order to foster and enhance interdisciplinary research in the biophysical sciences, bioengineering and medicine. VIIBRE efforts have led to the development of devices integral to organ-on-chip research. He is focusing on the neurovascular unit-on-a-chip, heart-on-a-chip, a missing organ microformulator, and microfluidic pumps and valves to control and analyze organs-on-chips.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...