Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
JHEP Rep ; 4(7): 100496, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35502229

RESUMO

Background & Aims: Cirrhosis entails elevated risk of COVID-19-associated mortality. This study determined T cell-mediated and antibody reactivity against the spike 1 (S1) protein of SARS-CoV-2 among 48 patients with cirrhosis and 39 healthy controls after mRNA COVID-19 vaccination. Methods: SARS-CoV-2-specific T-cell reactivity was measured by induced level of T cell-derived interferon-γ (IFN-γ) in blood cells stimulated ex vivo with multimeric peptides spanning the N-terminal portion of S1. S1-induced IFN-γ was quantified before and after the 1st and 2nd vaccination (BNT162b2, Pfizer-BioNTech or mRNA-1273, Moderna) alongside serum IgG against the receptor-binding domain (RBD) within S1 (anti-RBD-S1 IgG). Results: T-cell reactivity against S1 was reduced in patients with cirrhosis after the 1st (p <0.001 vs. controls) and 2nd (p <0.001) vaccination. Sixty-eight percent of patients lacked detectable S1-specific T-cell reactivity after the 1st vaccination vs. 19% in controls (odds ratio 0.11, 95% CI 0.03-0.48, p = 0.003) and 36% remained devoid of reactivity after the 2nd vaccination vs. 6% in controls (odds ratio 0.12, 95% CI 0.03-0.59, p = 0.009). T-cell reactivity in cirrhosis remained significantly impaired after correction for potential confounders in multivariable analysis. Advanced cirrhosis (Child-Pugh class B) was associated with absent or lower T-cell responses (p <0.05 vs. Child-Pugh class A). The deficiency of T-cell reactivity was paralleled by lower levels of anti-RBD-S1 IgG after the 1st (p <0.001 vs. controls) and 2nd (p <0.05) vaccination. Conclusions: Patients with cirrhosis show deficient T-cell reactivity against SARS-CoV-2 antigens along with diminished levels of anti-RBD-S1 IgG after dual COVID-19 vaccination, highlighting the need for vigilance and additional preventative measures. Clinical trial registration: EudraCT 2021-000349-42. Lay summary: T cells are a pivotal component in the defence against viruses. We show that patients with cirrhosis have impaired SARS-CoV-2-specific T-cell responses and lower antibody levels after mRNA vaccination against COVID-19 compared with healthy controls. Patients with more advanced liver disease exhibited particularly inferior vaccine responses. These results call for additional preventative measures in these patients.

4.
Blood Adv ; 6(9): 2723-2730, 2022 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-35286374

RESUMO

Recipients of allogeneic hematopoietic stem cell transplantation (allo-HSCT) for hematological diseases are at risk of severe disease and death from COVID-19. To determine the safety and immunogenicity of BNT162b2 and mRNA-1273 COVID-19 vaccines, samples from 50 infection-naive allo-HSCT recipients (median, 92 months from transplantation, range, 7-340 months) and 39 healthy controls were analyzed for serum immunoglobulin G (IgG) against the receptor binding domain (RBD) within spike 1 (S1) of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2; anti-RBD-S1 IgG) and for SARS-CoV-2-specific T-cell immunity, reflected by induction of T-cell-derived interferon-γ in whole blood stimulated ex vivo with 15-mer SI-spanning peptides with 11 amino acid overlap S1-spanning peptides. The rate of seroconversion was not significantly lower in allo-transplanted patients than in controls with 24% (12/50) and 6% (3/50) of patients remaining seronegative after the first and second vaccination, respectively. However, 58% of transplanted patients lacked T-cell responses against S1 peptides after 1 vaccination compared with 19% of controls (odds ratio [OR] 0.17; P = .009, Fisher's exact test) with a similar trend after the second vaccination where 28% of patients were devoid of detectable specific T-cell immunity, compared with 6% of controls (OR 0.18; P = .02, Fisher's exact test). Importantly, lack of T-cell reactivity to S1 peptides after vaccination heralded substandard levels (<100 BAU/mL) of anti-RBD-S1 IgG 5 to 6 months after the second vaccine dose (OR 8.2; P = .007, Fisher's exact test). We conclude that although allo-HSCT recipients achieve serum anti-RBD-S1 IgG against SARS-CoV-2 after 2 vaccinations, a deficiency of SARS-CoV-2-specific T-cell immunity may subsequently translate into insufficient humoral responses.


Assuntos
COVID-19 , Transplante de Células-Tronco Hematopoéticas , Anticorpos Antivirais , Vacina BNT162 , COVID-19/prevenção & controle , Vacinas contra COVID-19 , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Humanos , Imunidade Humoral , Imunoglobulina G , SARS-CoV-2 , Sobreviventes , Linfócitos T , Vacinação
5.
Exp Hematol Oncol ; 5: 25, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-27525194

RESUMO

BACKGROUND: Acute myeloid leukemia (AML) carrying nucleophosmin 1 (NPM1) mutations (NPMc(+)) is regarded as a separate entity of myeloid neoplasms due to its distinct biological and clinical features. However, NPMc(+) alone displays low leukemogenic activity and cooperating events appear crucial for AML to develop. Dysregulation of homeobox genes, such as HOXA9 and MEIS1, is a common transcriptional signature of NPMc(+) AML. Furthermore, the pathogenic role for NPMc(+) in AML remains incompletely understood. AIM: To elucidate if NPMc(+) collaborates with Meis1 or Hoxa9 in the evolvement of AML. METHODS: Murine bone marrow cells were genetically engineered to express mutated NPM1 variant A in combination with overexpression of Meis1 or Hoxa9. The capacity of the transduced cells to transform in vitro and to cause leukemia in vivo was then assessed. FINDINGS AND CONCLUSION: There was no synergy between NPMc(+) and Meis1 or Hoxa9 in causing leukemogenic transformation of murine bone marrow cells, or in inducing AML in a transplantation model. Hence, overexpression of Meis1 or Hoxa9 in combination with NPMc(+) expression was not sufficient to generate an NPMc(+) AML mouse model.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA