Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Am Nat ; 202(3): 368-381, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37606943

RESUMO

AbstractThe difference in body size between females and males, or sexual size dimorphism (SSD), is ubiquitous, yet we have a poor understanding of the developmental genetic mechanisms that generate it and how these mechanisms may vary within and among species. Such an understanding of the genetic architecture of SSD is important if we are to evaluate alternative models of SSD evolution, but the genetic architecture is difficult to describe because SSD is a characteristic of populations, not individuals. Here, we overcome this challenge by using isogenic lineages of Drosophila to measure SSD for 196 genotypes. We demonstrate extensive genetic variation for SSD, primarily driven by higher levels of genetic variation for body size among females than among males. While we observe a general increase in SSD with sex-averaged body size (pooling for sex) among lineages, most of the variation in SSD is independent of sex-averaged body size and shows a strong genetic correlation with sex-specific plasticity, such that increased female-biased SSD is associated with increased body size plasticity in females. Our data are consistent with the condition dependence hypothesis of sexual dimorphism and suggest that SSD in Drosophila is a consequence of selection on the developmental genetic mechanisms that regulate the plasticity of body size.


Assuntos
Drosophila , Caracteres Sexuais , Feminino , Masculino , Animais , Drosophila/genética , Tamanho Corporal , Genótipo , Variação Genética
2.
Heredity (Edinb) ; 130(5): 302-311, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36878946

RESUMO

Morphological scaling relationships between the sizes of individual traits and the body captures the characteristic shape of a species, and their evolution is the primary mechanism of morphological diversification. However, we have almost no knowledge of the genetic variation of scaling, which is critical if we are to understand how scaling evolves. Here we explore the genetics of population scaling relationships (scaling relationships fit to multiple genetically-distinct individuals in a population) by describing the distribution of individual scaling relationships (genotype-specific scaling relationships that are unseen or cryptic). These individual scaling relationships harbor the genetic variation in the developmental mechanisms that regulate trait growth relative to body growth, and theoretical studies suggest that their distribution dictates how the population scaling relationship will respond to selection. Using variation in nutrition to generate size variation within 197 isogenic lineages of Drosophila melanogaster, we reveal extensive variation in the slopes of the wing-body and leg-body individual scaling relationships among genotypes. This variation reflects variation in the nutritionally-induced size plasticity of the wing, leg, and body. Surprisingly, we find that variation in the slope of individual scaling relationships primarily results from variation in nutritionally-induced plasticity of body size, not leg or wing size. These data allow us to predict how different selection regimes affect scaling in Drosophila, and is the first step in identifying the genetic targets of such selection. More generally, our approach provides a framework for understanding the genetic variation of scaling, an important prerequisite to explaining how selection changes scaling and morphology.


Assuntos
Drosophila melanogaster , Drosophila , Animais , Drosophila melanogaster/genética , Tamanho Corporal/genética , Fenótipo , Asas de Animais/anatomia & histologia , Variação Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA