Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Development ; 151(8)2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38619323

RESUMO

Regulation of chromatin states is essential for proper temporal and spatial gene expression. Chromatin states are modulated by remodeling complexes composed of components that have enzymatic activities. CHD4 is the catalytic core of the nucleosome remodeling and deacetylase (NuRD) complex, which represses gene transcription. However, it remains to be determined how CHD4, a ubiquitous enzyme that remodels chromatin structure, functions in cardiomyocytes to maintain heart development. In particular, whether other proteins besides the NuRD components interact with CHD4 in the heart is controversial. Using quantitative proteomics, we identified that CHD4 interacts with SMYD1, a striated muscle-restricted histone methyltransferase that is essential for cardiomyocyte differentiation and cardiac morphogenesis. Comprehensive transcriptomic and chromatin accessibility studies of Smyd1 and Chd4 null embryonic mouse hearts revealed that SMYD1 and CHD4 repress a group of common genes and pathways involved in glycolysis, response to hypoxia, and angiogenesis. Our study reveals a mechanism by which CHD4 functions during heart development, and a previously uncharacterized mechanism regarding how SMYD1 represses cardiac transcription in the developing heart.


Assuntos
DNA Helicases , Proteínas de Ligação a DNA , Regulação da Expressão Gênica no Desenvolvimento , Coração , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase , Miócitos Cardíacos , Fatores de Transcrição , Animais , Humanos , Camundongos , Diferenciação Celular/genética , Cromatina/metabolismo , Glicólise/genética , Coração/embriologia , Histona-Lisina N-Metiltransferase/metabolismo , Histona-Lisina N-Metiltransferase/genética , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/metabolismo , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/genética , Camundongos Knockout , Proteínas Musculares/metabolismo , Proteínas Musculares/genética , Miócitos Cardíacos/metabolismo , Proteômica , Transcrição Gênica
2.
Biochim Biophys Acta Mol Cell Res ; 1871(1): 119572, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37659504

RESUMO

Heterozygous germline variants in ATP1A1, the gene encoding the α1 subunit of the Na+/K+-ATPase (NKA), have been linked to diseases including primary hyperaldosteronism and the peripheral neuropathy Charcot-Marie-Tooth disease (CMT). ATP1A1 variants that cause CMT induce loss-of-function of NKA. This heterodimeric (αß) enzyme hydrolyzes ATP to establish transmembrane electrochemical gradients of Na+ and K+ that are essential for electrical signaling and cell survival. Of the 4 catalytic subunit isoforms, α1 is ubiquitously expressed and is the predominant paralog in peripheral axons. Human population sequencing datasets indicate strong negative selection against both missense and protein-null ATP1A1 variants. To test whether haploinsufficiency generated by heterozygous protein-null alleles are sufficient to cause disease, we tested the neuromuscular characteristics of heterozygous Atp1a1+/- knockout mice and their wildtype littermates, while also evaluating if exercise increased CMT penetrance. We found that Atp1a1+/- mice were phenotypically normal up to 18 months of age. Consistent with the observations in mice, we report clinical phenotyping of a healthy adult human who lacks any clinical features of known ATP1A1-related diseases despite carrying a plasma-membrane protein-null early truncation variant, p.Y148*. Taken together, these results suggest that a malfunctioning gene product is required for disease induction by ATP1A1 variants and that if any pathology is associated with protein-null variants, they may display low penetrance or high age of onset.


Assuntos
Doença de Charcot-Marie-Tooth , ATPase Trocadora de Sódio-Potássio , Adulto , Animais , Humanos , Camundongos , Alelos , Doença de Charcot-Marie-Tooth/genética , Isoformas de Proteínas/genética , ATPase Trocadora de Sódio-Potássio/genética , ATPase Trocadora de Sódio-Potássio/metabolismo
3.
bioRxiv ; 2023 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-37090550

RESUMO

Heterozygous germline variants in ATP1A1 , the gene encoding the α1 subunit of the Na + /K + -ATPase (NKA), have been linked to diseases including primary hyperaldosteronism and the peripheral neuropathy Charcot-Marie-Tooth disease (CMT). ATP1A1 variants that cause CMT induce loss-of-function of NKA. This heterodimeric (αß) enzyme hydrolyzes ATP to establish transmembrane electrochemical gradients of Na + and K + that are essential for electrical signaling and cell survival. Of the 4 catalytic subunit isoforms, α1 is ubiquitously expressed and is the predominant paralog in peripheral axons. Human population sequencing datasets indicate strong negative selection against both missense and protein-null ATP1A1 variants. To test whether haploinsufficiency generated by heterozygous protein-null alleles are sufficient to cause disease, we tested the neuromuscular characteristics of heterozygous Atp1a1 +/- knockout mice and their wildtype littermates, while also evaluating if exercise increased CMT penetrance. We found that Atp1a1 +/- mice were phenotypically normal up to 18 months of age. Consistent with the observations in mice, we report clinical phenotyping of a healthy adult human who lacks any clinical features of known ATP1A1 -related diseases despite carrying a protein-null early truncation variant, p.Y148*. Taken together, these results suggest that a malfunctioning gene product is required for disease induction by ATP1A1 variants and that if any pathology is associated with protein-null variants, they may display low penetrance or high age of onset.

4.
Am J Hum Genet ; 110(1): 3-12, 2023 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-36608682

RESUMO

Although genomic research has predominantly relied on phenotypic ascertainment of individuals affected with heritable disease, the falling costs of sequencing allow consideration of genomic ascertainment and reverse phenotyping (the ascertainment of individuals with specific genomic variants and subsequent evaluation of physical characteristics). In this research modality, the scientific question is inverted: investigators gather individuals with a genomic variant and test the hypothesis that there is an associated phenotype via targeted phenotypic evaluations. Genomic ascertainment research is thus a model of predictive genomic medicine and genomic screening. Here, we provide our experience implementing this research method. We describe the infrastructure we developed to perform reverse phenotyping studies, including aggregating a super-cohort of sequenced individuals who consented to recontact for genomic ascertainment research. We assessed 13 studies completed at the National Institutes of Health (NIH) that piloted our reverse phenotyping approach. The studies can be broadly categorized as (1) facilitating novel genotype-disease associations, (2) expanding the phenotypic spectra, or (3) demonstrating ex vivo functional mechanisms of disease. We highlight three examples of reverse phenotyping studies in detail and describe how using a targeted reverse phenotyping approach (as opposed to phenotypic ascertainment or clinical informatics approaches) was crucial to the conclusions reached. Finally, we propose a framework and address challenges to building collaborative genomic ascertainment research programs at other institutions. Our goal is for more researchers to take advantage of this approach, which will expand our understanding of the predictive capability of genomic medicine and increase the opportunity to mitigate genomic disease.


Assuntos
Genoma , Informática Médica , Fenótipo , Genótipo , Genômica/métodos
5.
Genes Dev ; 36(7-8): 468-482, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35450884

RESUMO

The nucleosome remodeling and deacetylase (NuRD) complex is one of the central chromatin remodeling complexes that mediates gene repression. NuRD is essential for numerous developmental events, including heart development. Clinical and genetic studies have provided direct evidence for the role of chromodomain helicase DNA-binding protein 4 (CHD4), the catalytic component of NuRD, in congenital heart disease (CHD), including atrial and ventricular septal defects. Furthermore, it has been demonstrated that CHD4 is essential for mammalian cardiomyocyte formation and function. A key unresolved question is how CHD4/NuRD is localized to specific cardiac target genes, as neither CHD4 nor NuRD can directly bind DNA. Here, we coupled a bioinformatics-based approach with mass spectrometry analyses to demonstrate that CHD4 interacts with the core cardiac transcription factors GATA4, NKX2-5, and TBX5 during embryonic heart development. Using transcriptomics and genome-wide occupancy data, we characterized the genomic landscape of GATA4, NKX2-5, and TBX5 repression and defined the direct cardiac gene targets of the GATA4-CHD4, NKX2-5-CHD4, and TBX5-CHD4 complexes. These data were used to identify putative cis-regulatory elements controlled by these complexes. We genetically interrogated two of these silencers in vivo: Acta1 and Myh11 We show that deletion of these silencers leads to inappropriate skeletal and smooth muscle gene misexpression, respectively, in the embryonic heart. These results delineate how CHD4/NuRD is localized to specific cardiac loci and explicates how mutations in the broadly expressed CHD4 protein lead to cardiac-specific disease states.


Assuntos
DNA Helicases , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase , Animais , DNA Helicases/metabolismo , Genes Homeobox , Mamíferos/genética , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/genética , Miócitos Cardíacos/metabolismo , Nucleossomos , Fatores de Transcrição/genética
6.
PLoS Biol ; 17(9): e3000437, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31490923

RESUMO

Heart disease is the leading cause of death in the western world. Attaining a mechanistic understanding of human heart development and homeostasis and the molecular basis of associated disease states relies on the use of animal models. Here, we present the cardiac proteomes of 4 model vertebrates with dual circulatory systems: the pig (Sus scrofa), the mouse (Mus musculus), and 2 frogs (Xenopus laevis and Xenopus tropicalis). Determination of which proteins and protein pathways are conserved and which have diverged within these species will aid in our ability to choose the appropriate models for determining protein function and to model human disease. We uncover mammalian- and amphibian-specific, as well as species-specific, enriched proteins and protein pathways. Among these, we find and validate an enrichment in cell-cycle-associated proteins within Xenopus laevis. To further investigate functional units within cardiac proteomes, we develop a computational approach to profile the abundance of protein complexes across species. Finally, we demonstrate the utility of these data sets for predicting appropriate model systems for studying given cardiac conditions by testing the role of Kielin/chordin-like protein (Kcp), a protein found as enriched in frog hearts compared to mammals. We establish that germ-line mutations in Kcp in Xenopus lead to valve defects and, ultimately, cardiac failure and death. Thus, integrating these findings with data on proteins responsible for cardiac disease should lead to the development of refined, species-specific models for protein function and disease states.


Assuntos
Evolução Molecular , Miocárdio/metabolismo , Proteoma , Animais , Ciclo Celular , Feminino , Coração/crescimento & desenvolvimento , Cardiopatias/metabolismo , Humanos , Espectrometria de Massas , Camundongos , Modelos Cardiovasculares , Sus scrofa , Proteínas de Xenopus/metabolismo , Xenopus laevis
7.
Proc Natl Acad Sci U S A ; 115(26): 6727-6732, 2018 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-29891665

RESUMO

Cardiac development relies on proper cardiomyocyte differentiation, including expression and assembly of cell-type-specific actomyosin subunits into a functional cardiac sarcomere. Control of this process involves not only promoting expression of cardiac sarcomere subunits but also repressing expression of noncardiac myofibril paralogs. This level of transcriptional control requires broadly expressed multiprotein machines that modify and remodel the chromatin landscape to restrict transcription machinery access. Prominent among these is the nucleosome remodeling and deacetylase (NuRD) complex, which includes the catalytic core subunit CHD4. Here, we demonstrate that direct CHD4-mediated repression of skeletal and smooth muscle myofibril isoforms is required for normal cardiac sarcomere formation, function, and embryonic survival early in gestation. Through transcriptomic and genome-wide analyses of CHD4 localization, we identified unique CHD4 binding sites in smooth muscle myosin heavy chain, fast skeletal α-actin, and the fast skeletal troponin complex genes. We further demonstrate that in the absence of CHD4, cardiomyocytes in the developing heart form a hybrid muscle cell that contains cardiac, skeletal, and smooth muscle myofibril components. These misexpressed paralogs intercalate into the nascent cardiac sarcomere to disrupt sarcomere formation and cause impaired cardiac function in utero. These results demonstrate the genomic and physiological requirements for CHD4 in mammalian cardiac development.


Assuntos
DNA Helicases/fisiologia , Regulação da Expressão Gênica no Desenvolvimento , Cardiopatias Congênitas/genética , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/fisiologia , Miócitos Cardíacos/fisiologia , Sarcômeros/fisiologia , Animais , DNA Helicases/química , DNA Helicases/deficiência , Feminino , Técnicas de Silenciamento de Genes , Genes Letais , Coração/diagnóstico por imagem , Coração/embriologia , Cardiopatias Congênitas/diagnóstico por imagem , Cardiopatias Congênitas/embriologia , Cardiopatias Congênitas/patologia , Masculino , Camundongos , Proteínas Musculares/biossíntese , Proteínas Musculares/genética , Miofibrilas/metabolismo , Miofibrilas/patologia , Nucleossomos/metabolismo , Nucleossomos/ultraestrutura , Sarcômeros/ultraestrutura , Transcrição Gênica , Ultrassonografia Pré-Natal
8.
Dev Cell ; 36(3): 262-75, 2016 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-26859351

RESUMO

Human mutations in the cardiac transcription factor gene TBX5 cause congenital heart disease (CHD), although the underlying mechanism is unknown. We report characterization of the endogenous TBX5 cardiac interactome and demonstrate that TBX5, long considered a transcriptional activator, interacts biochemically and genetically with the nucleosome remodeling and deacetylase (NuRD) repressor complex. Incompatible gene programs are repressed by TBX5 in the developing heart. CHD mis-sense mutations that disrupt the TBX5-NuRD interaction cause depression of a subset of repressed genes. Furthermore, the TBX5-NuRD interaction is required for heart development. Phylogenetic analysis showed that the TBX5-NuRD interaction domain evolved during early diversification of vertebrates, simultaneous with the evolution of cardiac septation. Collectively, this work defines a TBX5-NuRD interaction essential to cardiac development and the evolution of the mammalian heart, and when altered may contribute to human CHD.


Assuntos
Montagem e Desmontagem da Cromatina/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Coração/embriologia , Miocárdio/metabolismo , Proteínas com Domínio T/genética , Animais , Humanos , Camundongos Transgênicos , Organogênese/genética , Organogênese/fisiologia , Proteínas com Domínio T/metabolismo , Transcrição Gênica/genética
9.
Development ; 143(5): 831-40, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-26811386

RESUMO

The development of the vertebrate embryonic heart occurs by hyperplastic growth as well as the incorporation of cells from tissues outside of the initial heart field. Amongst these tissues is the epicardium, a cell structure that develops from the precursor proepicardial organ on the right side of the septum transversum caudal to the developing heart. During embryogenesis, cells of the proepicardial organ migrate, adhere and envelop the maturing heart, forming the epicardium. The cells of the epicardium then delaminate and incorporate into the heart giving rise to cardiac derivatives, including smooth muscle cells and cardiac fibroblasts. Here, we demonstrate that the LIM homeodomain protein Lhx9 is transiently expressed in Xenopus proepicardial cells and is essential for the position of the proepicardial organ on the septum transversum. Utilizing a small-molecule screen, we found that Lhx9 acts upstream of integrin-paxillin signaling and consistently demonstrate that either loss of Lhx9 or disruption of the integrin-paxillin pathway results in mis-positioning of the proepicardial organ and aberrant deposition of extracellular matrix proteins. This leads to a failure of proepicardial cell migration and adhesion to the heart, and eventual death of the embryo. Collectively, these studies establish a requirement for the Lhx9-integrin-paxillin pathway in proepicardial organ positioning and epicardial formation.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Coração/embriologia , Integrina alfa4/metabolismo , Proteínas com Homeodomínio LIM/fisiologia , Pericárdio/fisiologia , Fatores de Transcrição/metabolismo , Fatores de Transcrição/fisiologia , Proteínas de Xenopus/metabolismo , Proteínas de Xenopus/fisiologia , Animais , Animais Geneticamente Modificados , Movimento Celular/fisiologia , Matriz Extracelular/metabolismo , Fibroblastos/metabolismo , Imuno-Histoquímica , Hibridização In Situ , Integrinas/metabolismo , Mesoderma/metabolismo , Paxilina/metabolismo , Pericárdio/embriologia , Estrutura Terciária de Proteína , Xenopus laevis/embriologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...