Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Infect Dis ; 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38862127

RESUMO

ELQ-300 is a potent antimalarial drug with activity against blood, liver, and vector stages of the disease. A prodrug, ELQ-331, exhibits reduced crystallinity and improved in vivo efficacy in preclinical testing, and currently, it is in the developmental pipeline for once-a-week dosing for oral prophylaxis against malaria. Because of the high cost of developing a new drug for human use and the high risk of drug failure, it is prudent to have a back-up plan in place. Here we describe ELQ-596, a member of a new subseries of 3-biaryl-ELQs, with enhanced potency in vitro against multidrug-resistant Plasmodium falciparum parasites. ELQ-598, a prodrug of ELQ-596 with diminished crystallinity, is more effective vs murine malaria than its progenitor ELQ-331 by 4- to 10-fold, suggesting that correspondingly lower doses could be used to protect and cure humans of malaria. With a longer bloodstream half-life in mice compared to its progenitor, ELQ-596 highlights a novel series of next-generation ELQs with the potential for once-monthly dosing for protection against malaria infection. Advances in the preparation of 3-biaryl-ELQs are presented along with preliminary results from experiments to explore key structure-activity relationships for drug potency, selectivity, pharmacokinetics, and safety.

2.
Malar J ; 23(1): 163, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38783317

RESUMO

BACKGROUND: Plasmodium vivax represents the most geographically widespread human malaria parasite affecting civilian and military populations in endemic areas. Targeting the pre-erythrocytic (PE) stage of the parasite life cycle is especially appealing for developing P. vivax vaccines as it would prevent disease and transmission. Here, naturally acquired immunity to a panel of P. vivax PE antigens was explored, which may facilitate vaccine development and lead to a better understanding of naturally acquired PE immunity. METHODS: Twelve P. vivax PE antigens orthologous to a panel of P. falciparum antigens previously identified as highly immunogenic in protected subjects after immunization with radiation attenuated sporozoites (RAS) were used for evaluation of humoral and cellular immunity by ELISA and IFN-γ ELISpot. Samples from P. vivax infected individuals (n = 76) from a low endemic malaria region in the Peruvian Amazon Basin were used. RESULTS: In those clinical samples, all PE antigens evaluated showed positive IgG antibody reactivity with a variable prevalence of 58-99% in recently P. vivax diagnosed patients. The magnitude of the IgG antibody response against PE antigens was lower compared with blood stage antigens MSP1 and DBP-II, although antibody levels persisted better for PE antigens (average decrease of 6% for PE antigens and 43% for MSP1, p < 0.05). Higher IgG antibodies was associated with one or more previous malaria episodes only for blood stage antigens (p < 0.001). High IgG responders across PE and blood stage antigens showed significantly lower parasitaemia compared to low IgG responders (median 1,921 vs 4,663 par/µl, p < 0.05). In a subgroup of volunteers (n = 17),positive IFN-γ T cell response by ELISPOT was observed in 35% vs 9-35% against blood stage MSP1 and PE antigens, respectively, but no correlation with IgG responses. CONCLUSIONS: These results demonstrate clear humoral and T cell responses against P. vivax PE antigens in individuals naturally infected with P. vivax. These data identify novel attractive PE antigens suitable for use in the potential development and selection of new malaria vaccine candidates which can be used as a part of malaria prevention strategies in civilian and military populations living in P. vivax endemic areas.


Assuntos
Antígenos de Protozoários , Malária Vivax , Plasmodium vivax , Proteínas de Protozoários , Plasmodium vivax/imunologia , Peru/epidemiologia , Humanos , Malária Vivax/imunologia , Malária Vivax/epidemiologia , Adulto , Masculino , Adulto Jovem , Adolescente , Feminino , Pessoa de Meia-Idade , Proteínas de Protozoários/imunologia , Antígenos de Protozoários/imunologia , Imunoglobulina G/sangue , Anticorpos Antiprotozoários/sangue , Ensaio de Imunoadsorção Enzimática , Criança , Idoso , ELISPOT
3.
NPJ Vaccines ; 7(1): 139, 2022 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-36333336

RESUMO

Whole-sporozoite (WSp) malaria vaccines induce protective immune responses in animal malaria models and in humans. A recent clinical trial with a WSp vaccine comprising genetically attenuated parasites (GAP) which arrest growth early in the liver (PfSPZ-GA1), showed that GAPs can be safely administered to humans and immunogenicity is comparable to radiation-attenuated PfSPZ Vaccine. GAPs that arrest late in the liver stage (LA-GAP) have potential for increased potency as shown in rodent malaria models. Here we describe the generation of four putative P. falciparum LA-GAPs, generated by CRISPR/Cas9-mediated gene deletion. One out of four gene-deletion mutants produced sporozoites in sufficient numbers for further preclinical evaluation. This mutant, PfΔmei2, lacking the mei2-like RNA gene, showed late liver growth arrest in human liver-chimeric mice with human erythrocytes, absence of unwanted genetic alterations and sensitivity to antimalarial drugs. These features of PfΔmei2 make it a promising vaccine candidate, supporting further clinical evaluation. PfΔmei2 (GA2) has passed regulatory approval for safety and efficacy testing in humans based on the findings reported in this study.

4.
NPJ Vaccines ; 7(1): 58, 2022 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-35618791

RESUMO

Vaccine-induced sterilizing protection from infection by Plasmodium parasites, the pathogens that cause malaria, will be essential in the fight against malaria as it would prevent both malaria-related disease and transmission. Stopping the relatively small number of parasites injected by the mosquito before they can migrate from the skin to the liver is an attractive means to this goal. Antibody-eliciting vaccines have been used to pursue this objective by targeting the major parasite surface protein present during this stage, the circumsporozoite protein (CSP). While CSP-based vaccines have recently had encouraging success in disease reduction, this was only achieved with extremely high antibody titers and appeared less effective for a complete block of infection (i.e., sterile protection). While such disease reduction is important, these and other results indicate that strategies focusing on CSP alone may not achieve the high levels of sterile protection needed for malaria eradication. Here, we show that monoclonal antibodies (mAbs) recognizing another sporozoite protein, TRAP/SSP2, exhibit a range of inhibitory activity and that these mAbs may augment CSP-based protection despite conferring no sterile protection on their own. Therefore, pursuing a multivalent subunit vaccine immunization is a promising strategy for improving infection-blocking malaria vaccines.

5.
Mol Ther ; 30(5): 1810-1821, 2022 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-35395399

RESUMO

Monoclonal antibodies are highly specific proteins that are cloned from a single B cell and bind to a single epitope on a pathogen. These laboratory-made molecules can serve as prophylactics or therapeutics for infectious diseases and have an impressive capacity to modulate the progression of disease, as demonstrated for the first time on a large scale during the COVID-19 pandemic. The high specificity and natural starting point of monoclonal antibodies afford an encouraging safety profile, yet the high cost of production remains a major limitation to their widespread use. While a monoclonal antibody approach to abrogating malaria infection is not yet available, the unique life cycle of the malaria parasite affords many opportunities for such proteins to act, and preliminary research into the efficacy of monoclonal antibodies in preventing malaria infection, disease, and transmission is encouraging. This review examines the current status and future outlook for monoclonal antibodies against malaria in the context of the complex life cycle and varied antigenic targets expressed in the human and mosquito hosts, and provides insight into the strengths and limitations of this approach to curtailing one of humanity's oldest and deadliest diseases.


Assuntos
Antineoplásicos Imunológicos , COVID-19 , Malária , Animais , Anticorpos Monoclonais/uso terapêutico , Anticorpos Antiprotozoários , COVID-19/prevenção & controle , Epitopos , Humanos , Malária/prevenção & controle , Pandemias
6.
Sci Rep ; 11(1): 11328, 2021 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-34059712

RESUMO

Following their inoculation by the bite of an infected Anopheles mosquito, the malaria parasite sporozoite forms travel from the bite site in the skin into the bloodstream, which transports them to the liver. The thrombospondin-related anonymous protein (TRAP) is a type 1 transmembrane protein that is released from secretory organelles and relocalized on the sporozoite plasma membrane. TRAP is required for sporozoite motility and host infection, and its extracellular portion contains adhesive domains that are predicted to engage host receptors. Here, we identified the human platelet-derived growth factor receptor ß (hPDGFRß) as one such protein receptor. Deletion constructs showed that the von Willebrand factor type A and thrombospondin repeat domains of TRAP are both required for optimal binding to hPDGFRß-expressing cells. We also demonstrate that this interaction is conserved in the human-infective parasite Plasmodium vivax, but not the rodent-infective parasite Plasmodium yoelii. We observed expression of hPDGFRß mainly in cells associated with the vasculature suggesting that TRAP:hPDGFRß interaction may play a role in the recognition of blood vessels by invading sporozoites.


Assuntos
Interações Hospedeiro-Patógeno , Plasmodium falciparum/metabolismo , Proteínas de Protozoários/metabolismo , Receptor beta de Fator de Crescimento Derivado de Plaquetas/metabolismo , Células HEK293 , Humanos , Plasmodium vivax/metabolismo , Plasmodium yoelii/metabolismo , Proteínas de Protozoários/isolamento & purificação
7.
Front Cell Infect Microbiol ; 10: 591046, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33392104

RESUMO

Chimeric rodent malaria parasites with the endogenous circumsporozoite protein (csp) gene replaced with csp from the human parasites Plasmodium falciparum (Pf) and P. vivax (Pv) are used in preclinical evaluation of CSP vaccines. Chimeric rodent parasites expressing PfCSP have also been assessed as whole sporozoite (WSP) vaccines. Comparable chimeric P. falciparum parasites expressing CSP of P. vivax could be used both for clinical evaluation of vaccines targeting PvCSP in controlled human P. falciparum infections and in WSP vaccines targeting P. vivax and P. falciparum. We generated chimeric P. falciparum parasites expressing both PfCSP and PvCSP. These Pf-PvCSP parasites produced sporozoite comparable to wild type P. falciparum parasites and expressed PfCSP and PvCSP on the sporozoite surface. Pf-PvCSP sporozoites infected human hepatocytes and induced antibodies to the repeats of both PfCSP and PvCSP after immunization of mice. These results support the use of Pf-PvCSP sporozoites in studies optimizing vaccines targeting PvCSP.


Assuntos
Vacinas Antimaláricas , Malária Falciparum , Malária , Plasmodium falciparum , Plasmodium vivax , Animais , Anticorpos Antiprotozoários , Vacinas Antimaláricas/genética , Malária Falciparum/prevenção & controle , Camundongos , Plasmodium falciparum/genética , Plasmodium vivax/genética , Proteínas de Protozoários/genética
8.
Nat Commun ; 10(1): 3950, 2019 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-31477704

RESUMO

Immunization with attenuated whole Plasmodium sporozoites constitutes a promising vaccination strategy. Compared to replication-deficient parasites, immunization with replication-competent parasites confers better protection and also induces a type I IFN (IFN-1) response, but whether this IFN-1 response has beneficial or adverse effects on vaccine-induced adaptive immunity is not known. Here, we show that IFN-1 signaling-deficient mice immunized with replication-competent sporozoites exhibit superior protection against infection. This correlates with superior CD8 T cell memory including reduced expression of the exhaustion markers PD-1 and LAG-3 on these cells and increased numbers of memory CD8 T cells in the liver. Moreover, the adoptive transfer of memory CD8 T cells from the livers of previously immunized IFN-1 signaling-deficient mice confers greater protection against liver stage parasites. However, the detrimental role of IFN-1 signaling is not CD8 T cell intrinsic. Together, our data demonstrate that liver stage-engendered IFN-1 signaling impairs hepatic CD8 T cell memory via a CD8 T cell-extrinsic mechanism.


Assuntos
Imunidade Adaptativa/imunologia , Eritrócitos/imunologia , Imunidade Inata/imunologia , Malária/imunologia , Plasmodium yoelii/imunologia , Esporozoítos/imunologia , Animais , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/parasitologia , Eritrócitos/parasitologia , Feminino , Imunização , Interferon Tipo I/imunologia , Interferon Tipo I/metabolismo , Fígado/imunologia , Fígado/metabolismo , Fígado/parasitologia , Malária/parasitologia , Malária/prevenção & controle , Vacinas Antimaláricas/administração & dosagem , Vacinas Antimaláricas/imunologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Plasmodium yoelii/fisiologia , Vacinas Atenuadas/administração & dosagem , Vacinas Atenuadas/imunologia
9.
Malar J ; 18(1): 291, 2019 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-31455339

RESUMO

BACKGROUND: The potential benefits of long-acting injectable chemoprotection (LAI-C) against malaria have been recently recognized, prompting a call for suitable candidate drugs to help meet this need. On the basis of its known pharmacodynamic and pharmacokinetic profiles after oral dosing, ELQ-331, a prodrug of the parasite mitochondrial electron transport inhibitor ELQ-300, was selected for study of pharmacokinetics and efficacy as LAI-C in mice. METHODS: Four trials were conducted in which mice were injected with a single intramuscular dose of ELQ-331 or other ELQ-300 prodrugs in sesame oil with 1.2% benzyl alcohol; the ELQ-300 content of the doses ranged from 2.5 to 30 mg/kg. Initial blood stage challenges with Plasmodium yoelii were used to establish the model, but the definitive study measure of efficacy was outcome after sporozoite challenge with a luciferase-expressing P. yoelii, assessed by whole-body live animal imaging. Snapshot determinations of plasma ELQ-300 concentration ([ELQ-300]) were made after all prodrug injections; after the highest dose of ELQ-331 (equivalent to 30 mg/kg ELQ-300), both [ELQ-331] and [ELQ-300] were measured at a series of timepoints from 6 h to 5½ months after injection. RESULTS: A single intramuscular injection of ELQ-331 outperformed four other ELQ-300 prodrugs and, at a dose equivalent to 30 mg/kg ELQ-300, protected mice against challenge with P. yoelii sporozoites for at least 4½ months. Pharmacokinetic evaluation revealed rapid and essentially complete conversion of ELQ-331 to ELQ-300, a rapidly achieved (< 6 h) and sustained (4-5 months) effective plasma ELQ-300 concentration, maximum ELQ-300 concentrations far below the estimated threshold for toxicity, and a distinctive ELQ-300 concentration versus time profile. Pharmacokinetic modeling indicates a high-capacity, slow-exchange tissue compartment which serves to accumulate and then slowly redistribute ELQ-300 into blood, and this property facilitates an extremely long period during which ELQ-300 concentration is sustained above a minimum fully-protective threshold (60-80 nM). CONCLUSIONS: Extrapolation of these results to humans predicts that ELQ-331 should be capable of meeting and far-exceeding currently published duration-of-effect goals for anti-malarial LAI-C. Furthermore, the distinctive pharmacokinetic profile of ELQ-300 after treatment with ELQ-331 may facilitate durable protection and enable protection for far longer than 3 months. These findings suggest that ELQ-331 warrants consideration as a leading prototype for LAI-C.


Assuntos
Antimaláricos/efeitos adversos , Antimaláricos/farmacocinética , Plasmodium yoelii/efeitos dos fármacos , Quinolonas/efeitos adversos , Quinolonas/farmacocinética , Animais , Feminino , Camundongos , Pró-Fármacos/efeitos adversos , Pró-Fármacos/farmacocinética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...