Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neurotrauma Rep ; 5(1): 254-266, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38515547

RESUMO

Blast-related traumatic brain injury (bTBI) is a major cause of neurological disorders in the U.S. military that can adversely impact some civilian populations as well and can lead to lifelong deficits and diminished quality of life. Among these types of injuries, the long-term sequelae are poorly understood because of variability in intensity and number of the blast exposure, as well as the range of subsequent symptoms that can overlap with those resulting from other traumatic events (e.g., post-traumatic stress disorder). Despite the valuable insights that rodent models have provided, there is a growing interest in using injury models using species with neuroanatomical features that more closely resemble the human brain. With this purpose, we established a gyrencephalic model of blast injury in ferrets, which underwent blast exposure applying conditions that closely mimic those associated with primary blast injuries to warfighters. In this study, we evaluated brain biochemical, microstructural, and behavioral profiles after blast exposure using in vivo longitudinal magnetic resonance imaging, histology, and behavioral assessments. In ferrets subjected to blast, the following alterations were found: 1) heightened impulsivity in decision making associated with pre-frontal cortex/amygdalar axis dysfunction; 2) transiently increased glutamate levels that are consistent with earlier findings during subacute stages post-TBI and may be involved in concomitant behavioral deficits; 3) abnormally high brain N-acetylaspartate levels that potentially reveal disrupted lipid synthesis and/or energy metabolism; and 4) dysfunction of pre-frontal cortex/auditory cortex signaling cascades that may reflect similar perturbations underlying secondary psychiatric disorders observed in warfighters after blast exposure.

2.
J Neurotrauma ; 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38047526

RESUMO

Blast exposure can cause auditory deficits that have a lasting, significant impact on patients. Although the effects of blast on auditory functions localized to the ear have been well documented, the impact of blast on central auditory processing is largely undefined. Understanding the structural and functional alterations in the central nervous system (CNS) associated with blast injuries is crucial for unraveling blast-induced pathophysiological pathways and advancing development of therapeutic interventions. In this study, we used electrophysiology in combination with optogenetics assay, proteomic analysis, and morphological evaluation to investigate the impairment of synaptic connectivity in the auditory cortex (AC) of mice following blast exposure. Our results show that the long-range functional connectivity between the medial geniculate nucleus (MGN) and AC was impaired in the acute phase of blast injury. We also identified impaired synaptic transmission and dendritic spine alterations within 7 days of blast exposure, which recovered at 28 days post-blast. Additionally, proteomic analysis identified a few differentially expressed proteins in the cortex that are involved in synaptic signaling and plasticity. These findings collectively suggest that blast-induced alterations in the sound signaling network in the auditory cortex may underlie hearing deficits in the acute and sub-acute phases after exposure to shockwaves. This study may shed light on the perturbations underlying blast-induced auditory dysfunction and provide insights into the potential therapeutic windows for improving auditory outcomes in blast-exposed individuals.

3.
J Neurotrauma ; 41(7-8): 1000-1004, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37905505

RESUMO

Mild concussive events without loss of consciousness are typically left untreated and can result in neurological abnormalities at later stages of life. No systematic studies have been carried out to determine the effect of concussion or repeated mild concussive episodes on brain vulnerability towards blast exposure. We have evaluated the effect of repeated mild concussive events on the vulnerability of brain to blast exposure using neurobehavioral functional assessments. Rats were subjected to either repeated mild concussive impacts (two impacts 1 week apart using a modified Marmarou weight drop model), a single blast exposure (19 psi using an advanced blast simulator), or a single blast exposure one day after the second mild concussive impact. Neurobehavioral changes were monitored using rotating pole test, open field exploration test, and novel object recognition test. Rotating pole test results indicated that vestibulomotor function was unaffected by blast or repeated mild concussive impacts, but significant impairment was observed in the blast exposed animals who had prior repeated mild concussive impacts. Novel object recognition test revealed short-term memory loss at 1 month post-blast only in rats subjected to both repeated mild concussive impacts and blast. Horizontal activity count, ambulatory activity count, center time and margin time legacies in the open field exploratory activity test indicated that only those rats exposed to both repeated mild concussive impacts and blast develop anxiety-like behaviors at both acute and sub-acute time-points. The results indicate that a history of repeated mild concussive episodes heightens brain vulnerability to blast exposure.


Assuntos
Traumatismos por Explosões , Concussão Encefálica , Militares , Ratos , Animais , Humanos , Concussão Encefálica/complicações , Encéfalo , Amnésia , Campanha Afegã de 2001- , Traumatismos por Explosões/complicações
4.
Mil Med ; 188(Suppl 6): 288-294, 2023 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-37948259

RESUMO

INTRODUCTION: Simulation of blast exposure in the laboratory has been inconsistent across laboratories. This is primarily because of adoption of the shock wave-generation techniques that are used in aerodynamic tests as opposed to application of blast exposures that are relevant to combat and training environments of a Warfighter. Because of the differences in blast signatures, characteristically different pathological consequences are observed among the preclinical studies. This is also further confounded by the varied exposure positioning of the animal subject (e.g., inside the blast simulator vs. at the mouth of the simulator). In this study, we compare biomechanical responses to blast exposures created in an advanced blast simulator (ABS) that generates "free-field"-like blast exposure with those produced by a traditionally applied cylindrical blast simulator (CBS) that generates a characteristically different blast signature. In addition, we have tested soft-armor vest protective responses with the ABS and CBS to compare the biomechanical responses to this form of personal protective equipment in each setting in a rodent model. MATERIALS AND METHODS: Anesthetized male Sprague-Dawley rats (n = 6) were surgically probed with an intrathoracic pressure (ITP) transducer and an intracranial pressure (ICP) transducer directed into the lateral cerebral ventricle (Millar, Inc.). An ABS for short-duration blast or a CBS for long-duration blast was used to expose animals to an incident blast overpressure of 14.14 psi (impulse: 30.27 psi*msec) or 16.3 psi (impulse: 71.9 psi*msec) using a custom-made holder (n = 3-4/group). An external pitot probe located near the animal was used to measure the total pressure (tip) and static gauge (side-on) pressure. Data were recorded using a TMX-18 data acquisition system (AstroNova Inc.). MATLAB was used to analyze the recordings to identify the peak amplitudes and rise times of the pressure traces. Peak ICP, peak ITP, and their impulses were normalized by expressing them relative to the associated peak static pressure. RESULTS: Normalized impulse (ABS: 1.02 ± 0.03 [vest] vs. 1.02 ± 0.01 [no-vest]; CBS: 1.21 ± 0.07 [vest] vs. 1.01 ± 0.01 [no-vest]) and peak pressure for ICP (ABS: 1.03 ± 0.03 [vest] vs. 0.99 ± 0.04 [no-vest]; CBS: 1.06 ± 0.08 [vest] vs. 1.13 ± 0.06 [no-vest]) remained unaltered when comparisons are made between vest and no-vest groups, and the normalized peak ITP (ABS: 1.50 ± 0.02 [vest] vs. 1.24 ± 0.16 [no-vest]; CBS: 1.71 ± 0.20 [vest] vs. 1.37 ± 0.06 [no-vest]) showed a trend of an increase in the vest group compared to the no-vest group. However, impulses in short-duration ABS (0.94 ± 0.06 [vest] vs. 0.92 ± 0.13 [no-vest]) blast remained unaltered, whereas a significant increase of ITP impulse (1.21 ± 0.07 [vest] vs. 1.17 ± 0.01 [no-vest]) in CBS was observed. CONCLUSIONS: The differences in the biomechanical response between ABS and CBS could be potentially attributed to the higher dynamic pressures that are imparted from long-duration CBS blasts, which could lead to chest compression and rapid acceleration/deceleration. In addition, ICP and ITP responses occur independently of each other, with no evidence of thoracic surge.


Assuntos
Traumatismos por Explosões , Ratos , Animais , Masculino , Ratos Sprague-Dawley , Explosões , Simulação por Computador , Equipamento de Proteção Individual
5.
Front Neurol ; 14: 1237647, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37877029

RESUMO

Introduction: Mild traumatic brain injury (mTBI) caused by repetitive low-intensity blast overpressure (relBOP) in military personnel exposed to breaching and heavy weapons is often unrecognized and is understudied. Exposure to relBOP poses the risk of developing abnormal behavioral and psychological changes such as altered cognitive function, anxiety, and depression, all of which can severely compromise the quality of the life of the affected individual. Due to the structural and anatomical heterogeneity of the brain, understanding the potentially varied effects of relBOP in different regions of the brain could lend insights into the risks from exposures. Methods: In this study, using a rodent model of relBOP and western blotting for protein expression we showed the differential expression of various neuropathological proteins like TDP-43, tight junction proteins (claudin-5, occludin, and glial fibrillary acidic protein (GFAP)) and a mechanosensitive protein (piezo-2) in different regions of the brain at different intensities and frequency of blast. Results: Our key results include (i) significant increase in claudin-5 after 1x blast of 6.5 psi in all three regions and no definitive pattern with higher number of blasts, (ii) significant increase in piezo-2 at 1x followed by significant decrease after multiple blasts in the cortex, (iii) significant increase in piezo-2 with increasing number of blasts in frontal cortex and mixed pattern of expression in hippocampus and (iv) mixed pattern of TDP-3 and GFAP expression in all the regions of brain. Discussion: These results suggest that there are not definitive patterns of changes in these marker proteins with increase in intensity and/or frequency of blast exposure in any particular region; the changes in expression of these proteins are different among the regions. We also found that the orientation of blast exposure (e.g. front vs. side exposure) affects the altered expression of these proteins.

6.
Int J Mol Sci ; 24(16)2023 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-37628746

RESUMO

Due to use of explosive devices and heavy weapons systems in modern conflicts, the effect of BW on the brain and body is of increasing concern. These exposures have been commonly linked with neurodegenerative diseases and psychiatric disorders in veteran populations. A likely neurobiological link between exposure to blasts and the development of neurobehavioral disorders, such as depression and PTSD, could be neuroinflammation triggered by the blast wave. In this study, we exposed rats to single or repeated BW (up to four exposures-one per day) at varied intensities (13, 16, and 19 psi) to mimic the types of blast exposures that service members may experience in training and combat. We then measured a panel of neuroinflammatory markers in the brain tissue with a multiplex cytokine/chemokine assay to understand the pathophysiological process(es) associated with single and repeated blast exposures. We found that single and repeated blast exposures promoted neuroinflammatory changes in the brain that are similar to those characterized in several neurological disorders; these effects were most robust after 13 and 16 psi single and repeated blast exposures, and they exceeded those recorded after 19 psi repeated blast exposures. Tumor necrosis factor-alpha and IL-10 were changed by 13 and 16 psi single and repeated blast exposures. In conclusion, based upon the growing prominence of negative psychological health outcomes in veterans and soldiers with a history of blast exposures, identifying the molecular etiology of these disorders, such as blast-induced neuroinflammation, is necessary for rationally establishing countermeasures and treatment regimens.


Assuntos
Citocinas , Doenças Neuroinflamatórias , Animais , Ratos , Encéfalo , Fator de Necrose Tumoral alfa , Bioensaio
7.
J Neurotrauma ; 2023 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-37279302

RESUMO

Blast-induced traumatic brain injury (bTBI) has been identified as the signature injury of Operation Iraqi Freedom and Operation Enduring Freedom. Although the incidence of bTBI increased significantly after the introduction of improvised explosive devices, the mechanism of the injury is still uncertain, which is negatively impacting the development of suitable countermeasures. Identification of suitable biomarkers that could aid in the proper diagnosis of and prognosis for both acute and chronic bTBI is essential since bTBI frequently is occult and may not be associated with overtly detectable injuries to the head. Lysophosphatidic acid (LPA) is a bioactive phospholipid generated by activated platelets, astrocytes, choroidal plexus cells and microglia and is reported to play major roles in stimulating inflammatory processes. The levels of LPA in the cerebrospinal fluid (CSF) have been reported to increase acutely after non-blast related brain injuries. In the present study, we have evaluated the utility of LPA levels measured in the CSF and plasma of laboratory rats as an acute and chronic biomarker of brain injury resulting from single and tightly coupled repeated blast overpressure exposures. In the CSF, many LPA species increased at acute time-points, returned to normal levels at 1 month, and increased again at 6 months and 1 year post-blast overpressure exposures. In the plasma, several LPA species increased acutely, returned to normal levels by 24 h, and were significantly decreased at 1 year post-blast overpressure exposures. These decreases in LPA species in the plasma were associated with decreased levels of lysophosphatidyl choline, suggesting a defective upstream biosynthetic pathway of LPAs in the plasma. Notably, the changes in LPA levels in the CSF (but not plasma) negatively correlated with neurobehavioral functions in these rats, suggesting that CSF levels of LPAs may provide a suitable biomarker of bTBI that reflects severity of injury.

8.
Neurosci Lett ; 810: 137364, 2023 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-37391063

RESUMO

Although blast-induced traumatic brain injury (bTBI) has been designated as the signature injury of recent combat operations, its precise pathological mechanism(s) has not been identified thus far. Prior preclinical studies on bTBI demonstrated acute neuroinflammatory cascades which are known to be contributing to neurodegeneration. Danger-associated chemical patterns are released from the injured cells, which activate non-specific pattern recognition receptors, such as toll-like receptors (TLRs) leading to increased expression of inflammatory genes and release of cytokines. Upregulation of specific TLRs in the brain has been described as a mechanism of injury in diverse brain injury models unrelated to blast exposure. However, the expression profile of various TLRs in bTBI has not been investigated thus far. Hence, we have evaluated the expression of transcripts for TLR1-TLR10 in the brain of a gyrencephalic animal model of bTBI. We exposed ferrets to tightly coupled repeated blasts and determined the differential expression of TLRs (TLR1-10) by quantitative RT-PCR in multiple brain regions at 4 hr, 24 hr, 7 days and 28 days post-blast injury. The results obtained indicate that multiple TLRs are upregulated in the brain at 4 hr, 24 hr, 7 days and 28 days post-blast. Specifically, upregulation of TLR2, TLR4 and TLR9 was noted in different brain regions, suggesting that multiple TLRs might play a role in the pathophysiology of bTBI and that drugs that can inhibit multiple TLRs might have enhanced efficacy to attenuate brain damage and thereby improve bTBI outcome. Taken together, these results suggest that several TLRs are upregulated in the brain after bTBI and participate in the inflammatory response and thereby provide new insights into the disease pathogenesis. Therefore, inhibition of multiple TLRs, including TLR2, 4 and 9, simultaneously might be a potential therapeutic strategy for the treatment of bTBI.


Assuntos
Traumatismos por Explosões , Lesões Encefálicas Traumáticas , Lesões Encefálicas , Animais , Furões , Regulação para Cima , Receptor 2 Toll-Like , Receptor 1 Toll-Like , Encéfalo , Lesões Encefálicas Traumáticas/tratamento farmacológico , Lesões Encefálicas/tratamento farmacológico , Lesões Encefálicas/patologia , Receptores Toll-Like
9.
Ann Biomed Eng ; 51(7): 1616-1626, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36913085

RESUMO

The biomechanics and efficacy of personal protective equipment in mitigating injuries from blast overpressure remain unclear. The objectives of this study were to define intrathoracic pressures in response to blast wave (BW) exposure and biomechanically evaluate a soft-armor vest (SA) at diminishing these perturbations. Male Sprague-Dawley rats were instrumented with pressure sensors in the thorax and were exposed laterally to multiple exposures ranging from 33 to 108 kPa BW with SA and without SA. There were significant increases in rise time, peak negative pressure, and negative impulse in the thoracic cavity compared to the BW. Esophageal measurements were increased to a greater extent when compared to the carotid and the BW for all parameters (except positive impulse, which decreased). SA minimally altered the pressure parameters and energy content. This study establishes the relationship of external blast flow conditions and intra-body biomechanical responses in the thoracic cavity of rodents with and without SA.


Assuntos
Traumatismos por Explosões , Ratos , Animais , Masculino , Roedores , Ratos Sprague-Dawley , Fenômenos Biomecânicos , Explosões
10.
Brain Sci ; 12(10)2022 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-36291274

RESUMO

Blast-induced traumatic brain injury (bTBI) frequently results in sleep-wake disturbances. However, limited studies have investigated the molecular signaling mechanisms underlying these sleep disturbances, and potentially efficacious therapies are lacking. We investigated the levels of melatonin and genes involved in melatonin synthesis pathway in the pineal glands of Sprague Dawley rats exposed to single and tightly coupled repeated blasts during the night and daytime. Rats were exposed to single and tightly coupled repeated blasts using an advanced blast simulator. The plasma, cerebrospinal fluid (CSF), and pineal gland were collected at 6 h, 24 h, or 1 month postblast at two different time points: one during the day (1000 h) and one at night (2200 h). Differential expressions of genes involved in pineal melatonin synthesis were quantified using quantitative real-time polymerase chain reaction (qRT-PCR). Plasma and CSF melatonin levels were assessed using a commercial melatonin ELISA kit. The plasma and CSF melatonin levels showed statistically significant decreases at 6 h and 24 h in the blast-exposed rats euthanized in the night (in dim light), with no significant alterations noted in rats euthanized in the morning (daylight) at all three-time points. Blast-exposed rats showed statistically significant decreases in Tph1, Aanat, Asmt, and Mtnr1b mRNA levels, along with increased Tph2 mRNA, in the pineal gland samples collected at night at 6 h and 24 h. No significant changes in the mRNA levels of these genes were noted at 1 month. These findings imply that the melatonin circadian rhythm is disrupted following blast exposure, which may be a factor in the sleep disturbances that blast victims frequently experience.

11.
Front Neurol ; 12: 746370, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34712199

RESUMO

Previous findings have indicated that pain relieving medications such as opioids and non-steroidal anti-inflammatory drugs (NSAIDs) may be neuroprotective after traumatic brain injury in rodents, but only limited studies have been performed in a blast-induced traumatic brain injury (bTBI) model. In addition, many pre-clinical TBI studies performed in rodents did not use analgesics due to the possibility of neuroprotection or other changes in cognitive, behavioral, and pathology outcomes. To examine this in a pre-clinical setting, we examined the neurobehavioral changes in rats given a single pre-blast dose of meloxicam, buprenorphine, or no pain relieving medication and exposed to tightly-coupled repeated blasts in an advanced blast simulator and evaluated neurobehavioral functions up to 28 days post-blast. A 16.7% mortality rate was recorded in the rats treated with buprenorphine, which might be attributed to the physiologically depressive side effects of buprenorphine in combination with isoflurane anesthesia and acute brain injury. Rats given buprenorphine, but not meloxicam, took more time to recover from the isoflurane anesthesia given just before blast. We found that treatment with meloxicam protected repeated blast-exposed rats from vestibulomotor dysfunctions up to day 14, but by day 28 the protective effects had receded. Both pain relieving medications seemed to promote short-term memory deficits in blast-exposed animals, whereas vehicle-treated blast-exposed animals showed only a non-significant trend toward worsening short-term memory by day 27. Open field exploratory behavior results showed that blast exposed rats treated with meloxicam engaged in significantly more locomotor activities and possibly a lesser degree of responses thought to reflect anxiety and depressive-like behaviors than any of the other groups. Rats treated with analgesics to alleviate possible pain from the blast ate more than their counterparts that were not treated with analgesics, which supports that both analgesics were effective in alleviating some of the discomfort that these rats potentially experienced post-blast injury. These results suggest that meloxicam and, to a lesser extent buprenorphine alter a variety of neurobehavioral functions in a rat bTBI model and, because of their impact on these neurobehavioral changes, may be less than ideal analgesic agents for pre-clinical studies evaluating these neurobehavioral responses after TBI.

12.
J Neurotrauma ; 38(20): 2801-2810, 2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34210150

RESUMO

Blast-induced traumatic brain injury (bTBI) has been documented as a significant concern for both military and civilian populations in response to the increased use of improvised explosive devices. Identifying biomarkers that could aid in the proper diagnosis and assessment of both acute and chronic bTBI is in urgent need since little progress has been made towards this goal. Addressing this knowledge gap is especially important in military veterans who are receiving assessment and care often years after their last blast exposure. Neuron-specific phosphorylated neurofilament heavy chain protein (pNFH) has been successfully evaluated as a reliable biomarker of different neurological disorders, as well as brain trauma resulting from contact sports and acute stages of brain injury of different origin. In the present study, we have evaluated the utility of pNFH levels measured in the cerebrospinal fluid (CSF) as an acute and chronic biomarker of brain injury resulting from single and tightly coupled repeated blast exposures using experimental rats. The pNFH levels increased at 24 h, returned to normal levels at 1 month, but increased again at 6 months and 1 year post-blast exposures. No significant changes were observed between single and repeated blast-exposed groups. To determine whether the observed increase of pNFH in CSF corresponded with its levels in the brain, we performed fluorescence immunohistochemistry in different brain regions at the four time-points evaluated. We observed decreased pNFH levels in those brain areas at 24 h, 6 months, and 1 year. The results suggest that blast exposure causes axonal degeneration at acute and chronic stages resulting in the release of pNFH, the abundant neuronal cytoskeletal protein. Moreover, the changes in pNFH levels in the CSF negatively correlated with the neurobehavioral functions in the rats, reinforcing suggestions that CSF levels of pNFH can be a suitable biomarker of bTBI.


Assuntos
Traumatismos por Explosões/líquido cefalorraquidiano , Lesões Encefálicas Traumáticas/líquido cefalorraquidiano , Proteínas de Neurofilamentos/líquido cefalorraquidiano , Animais , Biomarcadores/líquido cefalorraquidiano , Traumatismos por Explosões/patologia , Encéfalo/patologia , Lesões Encefálicas Traumáticas/patologia , Modelos Animais de Doenças , Imuno-Histoquímica , Masculino , Fosforilação , Ratos , Ratos Sprague-Dawley , Resultado do Tratamento
13.
Hear Res ; 407: 108292, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34214947

RESUMO

The use of explosive devices in war and terrorism has increased exposure to concussive blasts among both military personnel and civilians, which can cause permanent hearing and balance deficits that adversely affect survivors' quality of life. Significant knowledge gaps on the underlying etiology of blast-induced hearing loss and balance disorders remain, especially with regard to the effect of blast exposure on the vestibular system, the impact of multiple blast exposures, and long-term recovery. To address this, we investigated the effects of blast exposure on the inner ear using a mouse model in conjunction with a high-fidelity blast simulator. Anesthetized animals were subjected to single or triple blast exposures, and physiological measurements and tissue were collected over the course of recovery for up to 180 days. Auditory brainstem responses (ABRs) indicated significantly elevated thresholds across multiple frequencies. Limited recovery was observed at low frequencies in single-blasted mice. Distortion Product Otoacoustic Emissions (DPOAEs) were initially absent in all blast-exposed mice, but low-amplitude DPOAEs could be detected at low frequencies in some single-blast mice by 30 days post-blast, and in some triple-blast mice at 180 days post-blast. All blast-exposed mice showed signs of Tympanic Membrane (TM) rupture immediately following exposure and loss of outer hair cells (OHCs) in the basal cochlear turn. In contrast, the number of Inner Hair Cells (IHCs) and spiral ganglion neurons was unchanged following blast-exposure. A significant reduction in IHC pre-synaptic puncta was observed in the upper turns of blast-exposed cochleae. Finally, we found no significant loss of utricular hair cells or changes in vestibular function as assessed by vestibular evoked potentials. Our results suggest that (1) blast exposure can cause severe, long-term hearing loss which may be partially due to slow TM healing or altered mechanical properties of healed TMs, (2) traumatic levels of sound can still reach the inner ear and cause basal OHC loss despite middle ear dysfunction caused by TM rupture, (3) blast exposure may result in synaptopathy in humans, and (4) balance deficits after blast exposure may be primarily due to traumatic brain injury, rather than damage to the peripheral vestibular system.


Assuntos
Perda Auditiva , Emissões Otoacústicas Espontâneas , Animais , Limiar Auditivo , Potenciais Evocados Auditivos do Tronco Encefálico , Células Ciliadas Auditivas Externas , Qualidade de Vida , Sistema Vestibular
14.
Front Neurol ; 12: 652190, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33841318

RESUMO

Blast-induced auditory dysfunctions including tinnitus are the most prevalent disabilities in service members returning from recent combat operations. Most of the previous studies were focused on the effect of blast exposure on the peripheral auditory system and not much on the central auditory signal-processing regions in the brain. In the current study, we have exposed rats to single and tightly coupled repeated blasts and examined the degeneration of neuronal cytoskeletal elements using silver staining in the central auditory signal-processing regions in the brain at 24 h, 14 days, 1 month, 6 months, and 1 year. The brain regions evaluated include cochlear nucleus, lateral lemniscus, inferior colliculus, medial geniculate nucleus, and auditory cortex. The results obtained indicated that a significant increase in degeneration of neuronal cytoskeletal elements was observed only in the left and right cochlear nucleus. A significant increase in degeneration of neuronal cytoskeletal elements was observed in the cochlear nucleus at 24 h and persisted through 1 year, suggesting acute and chronic neuronal degeneration after blast exposure. No statistically significant differences were observed between single and repeated blasts. The localized degeneration of neuronal cytoskeletal elements in the cochlear nucleus suggests that the damage could be caused by transmission of blast shockwaves/noise through the ear canal and that use of suitable ear protection devices can protect against acute and chronic central auditory signal processing defects including tinnitus after blast exposure.

15.
Front Cell Neurosci ; 15: 636707, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33679327

RESUMO

Exposure to the repeated low-level blast overpressure (BOP) periodically experienced by military personnel in operational and training environments can lead to deficits in behavior and cognition. While these low-intensity blasts do not cause overt changes acutely, repeated exposures may lead to cumulative effects in the brain that include acute inflammation, vascular disruption, and other molecular changes, which may eventually contribute to neurodegenerative processes. To identify these acute changes in the brain following repeated BOP, an advanced blast simulator was used to expose rats to 8.5 or 10 psi BOP once per day for 14 days. At 24 h after the final BOP, brain tissue was collected and analyzed for inflammatory markers, astrogliosis (GFAP), tight junction proteins (claudin-5 and occludin), and neurodegeneration-related proteins (Aß40/42, pTau, TDP-43). After repeated exposure to 8.5 psi BOP, the change in cytokine profile was relatively modest compared to the changes observed following 10 psi BOP, which included a significant reduction in several inflammatory markers. Reduction in the tight junction protein occludin was observed in both groups when compared to controls, suggesting cerebrovascular disruption. While repeated exposure to 8.5 psi BOP led to a reduction in the Alzheimer's disease (AD)-related proteins amyloid-ß (Aß)40 and Aß42, these changes were not observed in the 10 psi group, which had a significant reduction in phosphorylated tau. Finally, repeated 10 psi BOP exposures led to an increase in GFAP, indicating alterations in astrocytes, and an increase in the mechanosensitive ion channel receptor protein, Piezo2, which may increase brain sensitivity to injury from pressure changes from BOP exposure. Overall, cumulative effects of repeated low-level BOP may increase the vulnerability to injury of the brain by disrupting neurovascular architecture, which may lead to downstream deleterious effects on behavior and cognition.

16.
Sci Rep ; 10(1): 16644, 2020 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-33024181

RESUMO

At present, there are no set guidelines establishing cumulative limits for blast exposure numbers and intensities in military personnel, in combat or training operations. The objective of the current study was to define lung injury, pathology, and associated behavioral changes from primary repeated blast lung injury under appropriate exposure conditions and combinations (i.e. blast overpressure (BOP) intensity and exposure frequency) using an advanced blast simulator. Male Sprague Dawley rats were exposed to BOP frontally and laterally at a pressure range of ~ 8.5-19 psi, for up to 30 daily exposures. The extent of lung injury was identified at 24 h following BOP by assessing the extent of surface hemorrhage/contusion, Hematoxylin and Eosin staining, and behavioral deficits with open field activity. Lung injury was mathematically modeled to define the military standard 1% lung injury threshold. Significant levels of histiocytosis and inflammation were observed in pressures ≥ 10 psi and orientation effects were observed at pressures ≥ 13 psi. Experimental data demonstrated ~ 8.5 psi is the threshold for hemorrhage/contusion, up to 30 exposures. Modeling the data predicted injury risk up to 50 exposures with intensity thresholds at 8 psi for front exposure and 6psi for side exposures, which needs to be validated further.


Assuntos
Traumatismos por Explosões/etiologia , Explosões , Substâncias Explosivas/efeitos adversos , Lesão Pulmonar/etiologia , Pressão/efeitos adversos , Animais , Modelos Animais de Doenças , Masculino , Ratos Sprague-Dawley , Risco , Fatores de Tempo
17.
Sci Rep ; 10(1): 10652, 2020 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-32606369

RESUMO

Auditory dysfunction is the most prevalent injury associated with blast overpressure exposure (BOP) in Warfighters and civilians, yet little is known about the underlying pathophysiological mechanisms. To gain insights into these injuries, an advanced blast simulator was used to expose rats to BOP and assessments were made to identify structural and molecular changes in the middle/inner ears utilizing otoscopy, RNA sequencing (RNA-seq), and histopathological analysis. Deficits persisting up to 1 month after blast exposure were observed in the distortion product otoacoustic emissions (DPOAEs) and the auditory brainstem responses (ABRs) across the entire range of tested frequencies (4-40 kHz). During the recovery phase at sub-acute time points, low frequency (e.g. 4-8 kHz) hearing improved relatively earlier than for high frequency (e.g. 32-40 kHz). Perforation of tympanic membranes and middle ear hemorrhage were observed at 1 and 7 days, and were restored by day 28 post-blast. A total of 1,158 differentially expressed genes (DEGs) were significantly altered in the cochlea on day 1 (40% up-regulated and 60% down-regulated), whereas only 49 DEGs were identified on day 28 (63% up-regulated and 37% down-regulated). Seven common DEGs were identified at both days 1 and 28 following blast, and are associated with inner ear mechanotransduction, cytoskeletal reorganization, myelin development and axon survival. Further studies on altered gene expression in the blast-injured rat cochlea may provide insights into new therapeutic targets and approaches to prevent or treat similar cases of blast-induced auditory damage in human subjects.


Assuntos
Traumatismos por Explosões/patologia , Orelha Interna/patologia , Perda Auditiva/patologia , Animais , Audiometria de Tons Puros/métodos , Limiar Auditivo/fisiologia , Cóclea/patologia , Orelha Média/patologia , Potenciais Evocados Auditivos do Tronco Encefálico/fisiologia , Audição/fisiologia , Masculino , Mecanotransdução Celular/fisiologia , Emissões Otoacústicas Espontâneas/fisiologia , Otoscopia/métodos , Ratos , Ratos Sprague-Dawley
18.
Front Neurol ; 11: 438, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32508743

RESUMO

Blast-induced traumatic brain injury (bTBI) is one of the major causes of persistent disabilities in Service Members, and a history of bTBI has been identified as a primary risk factor for developing age-associated neurodegenerative diseases. Clinical observations of several military blast casualties have revealed a rapid age-related loss of white matter integrity in the brain. In the present study, we have tested the effect of single and tightly coupled repeated blasts on cellular senescence in the rat brain. Isoflurane-anesthetized rats were exposed to either a single or 2 closely coupled blasts in an advanced blast simulator. Rats were euthanized and brains were collected at 24 h, 1 month and 1 year post-blast to determine senescence-associated-ß-galactosidase (SA-ß-gal) activity in the cells using senescence marker stain. Single and repeated blast exposures resulted in significantly increased senescence marker staining in several neuroanatomical structures, including cortex, auditory cortex, dorsal lateral thalamic nucleus, geniculate nucleus, superior colliculus, ventral thalamic nucleus and hippocampus. In general, the increases in SA-ß-gal activity were more pronounced at 1 month than at 24 h or 1 year post-blast and were also greater after repeated than single blast exposures. Real-time quantitative RT-PCR analysis revealed decreased levels of mRNA for senescence marker protein-30 (SMP-30) and increased mRNA levels for p21 (cyclin dependent kinase inhibitor 1A, CDKN1A), two other related protein markers of cellular senescence. The increased senescence observed in some of these affected brain structures may be implicated in several long-term sequelae after exposure to blast, including memory disruptions and impairments in movement, auditory and ocular functions.

19.
Mil Med ; 185(Suppl 1): 256-262, 2020 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-32074328

RESUMO

OBJECTIVE: Infection as sequelae to explosion-related injury is an enduring threat to our troops. There are limited data on the effects of blast on antibiotic pharmacokinetics (PK), pharmacodynamics (PD), and efficacy. The observational study presented here is our Institute's first attempt to address this issue by combining our existing interdepartmental blast, infection modeling, and in vivo PK/PD capabilities and was designed to determine the PK effects of blast on the first-line antibiotic, cefazolin, in an in vivo mouse model. METHODS: A total of 160 male BALB/c mice were divided to sham and blast (exposed to blast overpressure of 19 psi) in two biological replicates. At 1 hour after blast/sham exposure, the animals received IV injection of cefazolin (328 mg/kg). Animals were euthanized at 3 minutes, 10 minutes, 15 minutes, 30 minutes, 1 hour, 3 hours, 6 hours, or 10 hours after the injection. Plasma and liver were analyzed for concentration of cefazolin using mass-spectrometry. RESULTS: We observed increases in the concentration of cefazolin in the plasma and liver of blast exposed animals at later time points and increase in elimination half-life. CONCLUSION: Our results indicate that blast-induced physiologic changes significantly influence cefazolin PK and suggest that efficacy could be affected in the context of the blast; assessment of efficacy and PD effects require further investigation. Metabolic changes resulting from blast may influence other classes of antibiotics and other therapeutics used with these injuries. Therefore, this may have important treatment considerations in other areas of military medicine.


Assuntos
Antibacterianos/farmacocinética , Traumatismos por Explosões/complicações , Pressão/efeitos adversos , Animais , Antibacterianos/sangue , Antibacterianos/uso terapêutico , Área Sob a Curva , Traumatismos por Explosões/sangue , Traumatismos por Explosões/fisiopatologia , Cefazolina/sangue , Cefazolina/farmacocinética , Cefazolina/uso terapêutico , Modelos Animais de Doenças , Explosões/estatística & dados numéricos , Camundongos , Camundongos Endogâmicos BALB C/lesões , Camundongos Endogâmicos BALB C/fisiologia , Curva ROC
20.
Front Neurol ; 11: 611816, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33384658

RESUMO

Exposure to blast overpressure waves is implicated as the major cause of ocular injuries and resultant visual dysfunction in veterans involved in recent combat operations. No effective therapeutic strategies have been developed so far for blast-induced ocular dysfunction. Lysophosphatidic acid (LPA) is a bioactive phospholipid generated by activated platelets, astrocytes, choroidal plexus cells, and microglia and is reported to play major roles in stimulating inflammatory processes. The levels of LPA in the cerebrospinal fluid have been reported to increase acutely in patients with traumatic brain injury (TBI) as well as in a controlled cortical impact (CCI) TBI model in mice. In the present study, we have evaluated the efficacy of a single intravenous administration of a monoclonal LPA antibody (25 mg/kg) given at 1 h post-blast for protection against injuries to the retina and associated ocular dysfunctions. Our results show that a single 19 psi blast exposure significantly increased the levels of several species of LPA in blood plasma at 1 and 4 h post-blast. The anti-LPA antibody treatment significantly decreased glial cell activation and preserved neuronal cell morphology in the retina on day 8 after blast exposure. Optokinetic measurements indicated that anti-LPA antibody treatment significantly improved visual acuity in both eyes on days 2 and 6 post-blast exposure. Anti-LPA antibody treatment significantly increased rod photoreceptor and bipolar neuronal cell signaling in both eyes on day 7 post-blast exposure. These results suggest that blast exposure triggers release of LPAs, which play a major role promoting blast-induced ocular injuries, and that a single early administration of anti-LPA antibodies provides significant protection.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...