Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Life (Basel) ; 13(6)2023 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-37374160

RESUMO

Bone mechanics is well understood at every length scale except the nano-level. We aimed to investigate the relationship between bone nanoscale and tissue-level mechanics experimentally. We tested two hypotheses: (1) nanoscale strains were lower in hip fracture patients versus controls, and (2) nanoscale mineral and fibril strains were inversely correlated with aging and fracture. A cross-sectional sample of trabecular bone sections was prepared from the proximal femora of two human donor groups (aged 44-94 years): an aging non-fracture control group (n = 17) and a hip-fracture group (n = 20). Tissue, fibril, and mineral strain were measured simultaneously using synchrotron X-ray diffraction during tensile load to failure, then compared between groups using unpaired t-tests and correlated with age using Pearson's correlation. Controls exhibited significantly greater peak tissue, mineral, and fibril strains than the hip fracture (all p < 0.05). Age was associated with a decrease in peak tissue (p = 0.099) and mineral (p = 0.004) strain, but not fibril strain (p = 0.260). Overall, hip fracture and aging were associated with changes in the nanoscale strain that are reflected at the tissue level. Data must be interpreted within the limitations of the observational cross-sectional study design, so we propose two new hypotheses on the importance of nanomechanics. (1) Hip fracture risk is increased by low tissue strain, which can be caused by low collagen or mineral strain. (2) Age-related loss of tissue strain is dependent on the loss of mineral but not fibril strain. Novel insights into bone nano- and tissue-level mechanics could provide a platform for the development of bone health diagnostics and interventions based on failure mechanisms from the nanoscale up.

2.
Sci Rep ; 10(1): 14208, 2020 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-32848149

RESUMO

Nanoscale mineralized collagen fibrils may be important determinants of whole-bone mechanical properties and contribute to the risk of age-related fractures. In a cross-sectional study nano- and tissue-level mechanics were compared across trabecular sections from the proximal femora of three groups (n = 10 each): ageing non-fractured donors (Controls); untreated fracture patients (Fx-Untreated); bisphosphonate-treated fracture patients (Fx-BisTreated). Collagen fibril, mineral and tissue mechanics were measured using synchrotron X-Ray diffraction of bone sections under load. Mechanical data were compared across groups, and tissue-level data were regressed against nano. Compared to controls fracture patients exhibited significantly lower critical tissue strain, max strain and normalized strength, with lower peak fibril and mineral strain. Bisphosphonate-treated exhibited the lowest properties. In all three groups, peak mineral strain coincided with maximum tissue strength (i.e. ultimate stress), whilst peak fibril strain occurred afterwards (i.e. higher tissue strain). Tissue strain and strength were positively and strongly correlated with peak fibril and mineral strains. Age-related fractures were associated with lower peak fibril and mineral strain irrespective of treatment. Indicating earlier mineral disengagement and the subsequent onset of fibril sliding is one of the key mechanisms leading to fracture. Treatments for fragility should target collagen-mineral interactions to restore nano-scale strain to that of healthy bone.


Assuntos
Envelhecimento/fisiologia , Osso e Ossos/fisiologia , Colágenos Fibrilares/fisiologia , Fraturas do Quadril/etiologia , Osteoporose/complicações , Idoso , Idoso de 80 Anos ou mais , Estudos de Casos e Controles , Estudos Transversais , Feminino , Humanos , Masculino , Nanoestruturas , Osteoporose/fisiopatologia
3.
Am J Physiol Endocrinol Metab ; 294(6): E1011-22, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18349112

RESUMO

The aim of this study was to investigate fast corticosteroid feedback of the hypothalamic-pituitary-adrenal (HPA) axis under basal conditions, in particular the role of the mineralocorticoid receptor. Blood samples were collected every 5 min from conscious rats at the diurnal peak, using an automated blood sampling system, and assayed for corticosterone. Feedback inhibition by rapidly increasing concentrations of ligand was achieved with an intravenous bolus of exogenous corticosteroid. This resulted in a significant reduction in plasma corticosterone concentrations within 23 min of the aldosterone bolus and 28 min of methylprednisolone. Evaluation of the pulsatile secretion of corticosterone revealed that the secretory event in progress at the time of administration of exogenous steroid was unaffected, whereas the next secretory event was inhibited by both aldosterone and methylprednisolone. The inhibitory effect of aldosterone was limited in duration (1 secretory event only), whereas that of methylprednisolone persisted for 4-5 h. Intravenous administration of canrenoate (a mineralocorticoid receptor antagonist) also had rapid effects on the HPA axis, with an elevation of ACTH within 10 min and corticosterone within 20 min. The inhibitory effect of aldosterone was unaffected by pretreatment with the glucocorticoid receptor antagonist RU-38486 but blocked by the canrenoate. These data imply an important role for the mineralocorticoid receptor in fast feedback of basal HPA activity and suggest that mineralocorticoids can dynamically regulate basal corticosterone concentrations during the diurnal peak, a time of day when there is already a high level of occupancy of the cytoplasmic mineralocorticoid receptor.


Assuntos
Corticosteroides/farmacologia , Sistema Hipotálamo-Hipofisário/metabolismo , Sistema Hipófise-Suprarrenal/metabolismo , Receptores de Glucocorticoides/metabolismo , Receptores de Mineralocorticoides/metabolismo , Corticosteroides/antagonistas & inibidores , Corticosteroides/metabolismo , Hormônio Adrenocorticotrópico/sangue , Animais , Área Sob a Curva , Ácido Canrenoico/farmacologia , Corticosterona/sangue , Retroalimentação/fisiologia , Feminino , Antagonistas de Hormônios/farmacologia , Sistema Hipotálamo-Hipofisário/efeitos dos fármacos , Hemissuccinato de Metilprednisolona/farmacologia , Mifepristona/farmacologia , Antagonistas de Receptores de Mineralocorticoides , Sistema Hipófise-Suprarrenal/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Receptores de Glucocorticoides/antagonistas & inibidores
4.
Eur J Pharmacol ; 583(2-3): 255-62, 2008 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-18339373

RESUMO

Glucocorticoids are secreted in discrete pulses resulting in an ultradian rhythm in all species that have been studied. In the rat there is an approximately hourly rhythm of corticosterone secretion, which appears to be regulated by alternating activation and inhibition of the HPA axis. At the level of signal transduction, the response to these pulses of corticosterone is determined by its dynamic interaction with the two transcription factors--the glucocorticoid and mineralocorticoid receptors. While the mineralocorticoid receptor remains activated throughout the ultradian cycle, the glucocorticoid receptor shows a phasic response to each individual pulse of corticosterone. This phasic response is regulated by an intranuclear proteasome-dependent rapid downregulation of the activated glucocorticoid receptor.


Assuntos
Ciclos de Atividade/fisiologia , Glucocorticoides/metabolismo , Transdução de Sinais/fisiologia , Animais , Humanos , Sistema Hipotálamo-Hipofisário/metabolismo , Sistema Hipófise-Suprarrenal/metabolismo , Ratos , Estresse Fisiológico/metabolismo , Fatores de Tempo
5.
Endocrinology ; 148(11): 5470-7, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17690167

RESUMO

Timing is a critical factor in neuroendocrinology. Despite this, the temporal aspects of glucocorticoid signaling in the regulation of in vivo targets have been largely overlooked. Here, we present data showing that plasma glucocorticoid levels differ greatly from the constant signal predominantly used in cell culture experiments. Using an automated blood sampling system, we found that under basal conditions in nonstressed rats, corticosterone release occurs in discrete pulses of various amplitudes dependent on the circadian cycle. This basal pattern changes to a prolonged elevated nonpulsatile release in response to stressful stimuli. We have been able to recapitulate these different patterns of corticosterone presentation (short pulse vs. prolonged elevation) in adrenalectomized rats, and show that each pattern results in differential activation of hippocampal glucocorticoid and mineralocorticoid receptors. Finally, we provide evidence for a rapid proteasome-dependent clearance of activated glucocorticoid receptors, but not mineralocorticoid receptors, as a novel mechanism to allow dynamic interaction with rapidly changing physiological and environmental conditions.


Assuntos
Núcleo Celular/metabolismo , Corticosterona/metabolismo , Corticosterona/farmacologia , Regulação para Baixo , Hipocampo/efeitos dos fármacos , Complexo de Endopeptidases do Proteassoma/fisiologia , Receptores de Glucocorticoides/metabolismo , Animais , Núcleo Celular/efeitos dos fármacos , Ritmo Circadiano , Corticosterona/administração & dosagem , Corticosterona/sangue , Regulação para Baixo/efeitos dos fármacos , Feminino , Hipocampo/metabolismo , Injeções Intraperitoneais , Masculino , Modelos Biológicos , Complexo de Endopeptidases do Proteassoma/efeitos dos fármacos , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Transporte Proteico/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...