Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Ann Rev Mar Sci ; 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38955207

RESUMO

Scenarios to stabilize global climate and meet international climate agreements require rapid reductions in human carbon dioxide (CO2) emissions, often augmented by substantial carbon dioxide removal (CDR) from the atmosphere. While some ocean-based removal techniques show potential promise as part of a broader CDR and decarbonization portfolio, no marine approach is ready yet for deployment at scale because of gaps in both scientific and engineering knowledge. Marine CDR spans a wide range of biotic and abiotic methods, with both common and technique-specific limitations. Further targeted research is needed on CDR efficacy, permanence, and additionality as well as on robust validation methods-measurement, monitoring, reporting, and verification-that are essential to demonstrate the safe removal and long-term storage of CO2. Engineering studies are needed on constraints including scalability, costs, resource inputs, energy demands, and technical readiness. Research on possible co-benefits, ocean acidification effects, environmental and social impacts, and governance is also required.

2.
J Theor Biol ; 593: 111901, 2024 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-39004118

RESUMO

Predictive models of signaling pathways have proven to be difficult to develop. Traditional approaches to developing mechanistic models rely on collecting experimental data and fitting a single model to that data. This approach works for simple systems but has proven unreliable for complex systems such as biological signaling networks. Thus, there is a need to develop new approaches to create predictive mechanistic models of complex systems. To meet this need, we developed a method for generating artificial signaling networks that were reasonably realistic and thus could be treated as ground truth models. These synthetic models could then be used to generate synthetic data for developing and testing algorithms designed to recover the underlying network topology and associated parameters. We defined the reaction degree and reaction distance to measure the topology of reaction networks, especially to consider enzymes. To determine whether our generated signaling networks displayed meaningful behavior, we compared them with signaling networks from the BioModels Database. This comparison indicated that our generated signaling networks had high topological similarities with BioModels signaling networks with respect to the reaction degree and distance distributions. In addition, our synthetic signaling networks had similar behavioral dynamics with respect to both steady states and oscillations, suggesting that our method generated synthetic signaling networks comparable with BioModels and thus could be useful for building network evaluation tools.


Assuntos
Algoritmos , Simulação por Computador , Modelos Biológicos , Transdução de Sinais , Transdução de Sinais/fisiologia , Biologia Sintética/métodos
3.
bioRxiv ; 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38746178

RESUMO

Biochemical reaction networks perform a variety of signal processing functions, one of which is computing the integrals of signal values. This is often used in integral feedback control, where it enables a system's output to respond to changing inputs, but to then return exactly back to some pre-determined setpoint value afterward. To gain a deeper understanding of how biochemical networks are able to both integrate signals and perform integral feedback control, we investigated these abilities for several simple reaction networks. We found imperfect overlap between these categories, with some networks able to perform both tasks, some able to perform integration but not integral feedback control, and some the other way around. Nevertheless, networks that could either integrate or perform integral feedback control shared key elements. In particular, they included a chemical species that was neutrally stable in the open loop system (no feedback), meaning that this species does not have a unique stable steady-state concentration. Neutral stability could arise from zeroth order decay reactions, binding to a partner that was produced at a constant rate (which occurs in antithetic control), or through a long chain of covalent cycles. Mathematically, it arose from rate equations for the reaction network that were underdetermined when evaluated at steady-state.

4.
Bioessays ; 46(3): e2300188, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38247191

RESUMO

Design patterns are generalized solutions to frequently recurring problems. They were initially developed by architects and computer scientists to create a higher level of abstraction for their designs. Here, we extend these concepts to cell biology to lend a new perspective on the evolved designs of cells' underlying reaction networks. We present a catalog of 21 design patterns divided into three categories: creational patterns describe processes that build the cell, structural patterns describe the layouts of reaction networks, and behavioral patterns describe reaction network function. Applying this pattern language to the E. coli central metabolic reaction network, the yeast pheromone response signaling network, and other examples lends new insights into these systems.


Assuntos
Escherichia coli , Transdução de Sinais , Escherichia coli/genética , Escherichia coli/metabolismo , Redes e Vias Metabólicas , Modelos Biológicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA