Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Diagn Microbiol Infect Dis ; 94(4): 326-330, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30928178

RESUMO

Misidentification between Taylorella equigenitalis, the causative agent of contagious equine metritis (CEM), and Taylorella asinigenitalis is observed by the gold standard culture method. The performance of matrix-assisted laser desorption ionization-time-of-flight mass spectrometry (MALDI-TOF MS) for Taylorella species identification was evaluated using 85 T. equigenitalis and 28 T. asinigenitalis strains selected on the basis of multilocus sequence typing data. Seven of the T. equigenitalis and 9 of the T. asinigenitalis strains were used to generate in-house reference spectra to expand the existing commercial Bruker database. Two bacterial incubation times and 3 different sample preparation procedures were compared. Overall, we demonstrated the usefulness of MALDI-TOF MS as a differential diagnostic tool for CEM; however, commercial spectra databases should be expanded with T. asinigenitalis reference spectra to achieve the expected performance. Moreover, direct spotting of 48-h colonies was not only the most efficient protocol but also the easiest to implement in a clinical setting.


Assuntos
Infecções por Bactérias Gram-Negativas/veterinária , Doenças dos Cavalos/microbiologia , Taylorella equigenitalis/classificação , Taylorella equigenitalis/isolamento & purificação , Taylorella/classificação , Taylorella/isolamento & purificação , Animais , Bases de Dados Factuais , Equidae , Feminino , Infecções por Bactérias Gram-Negativas/diagnóstico , Infecções por Bactérias Gram-Negativas/microbiologia , Doenças dos Cavalos/diagnóstico , Cavalos , Masculino , Tipagem de Sequências Multilocus , Filogenia , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
2.
Front Microbiol ; 8: 503, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28400760

RESUMO

The importance of the role of environment in the dissemination of antimicrobial resistant bacteria is now well recognized. Thus, bacterial indicators to monitor the phenomena are required. The Aeromonas genus is autochthonous in the aquatic environment and easy to detect in any water type, such as freshwater, or wastewater. These microorganisms are also causing infections in humans and animals (including fish). Furthermore, as Aeromonas spp. is able to acquire antimicrobial resistance mechanisms, it is candidate for indicator bacteria to follow antimicrobial resistance dissemination in aquatic environments. Unfortunately, to date, interpretation criteria for Aeromonas spp. for antimicrobial susceptibility tests are scarce in the literature. No epidemiological cut-off values for Aeromonas are currently available at EUCAST to interpret Minimum Inhibitory Concentrations (MIC). The only interpretation criteria available are clinical breakpoints from CLSI that are adapted from Enterobacteriaceae. Based on the results of MIC distributions obtained for a collection of environmental isolates of Aeromonas, this study aimed at proposing tentative epidemiological cut-off values (COWT) for Aeromonas spp. assessing whether the genus is an acceptable level of definition. Thus, 233 isolates collected from 16 rivers were identified at species level using Maldi-Tof (Bruker). Eleven different species were identified, the most abundant were A. bestiarum (n = 54), A. salmonicida (n = 45), A. sobria (n = 41), and A. eucrenophila (n = 37). 96-well micro-plates containing different concentrations of 15 antimicrobials, namely cefotaxime, ceftazidime, chloramphenicol, colistin, enrofloxacin, erythromycin, florfenicol, flumequine, gentamicin, nalidixic acid, oxolinic acid, streptomycin, temocillin, tetracycline, and trimethoprim-sulfamethoxazole, were prepared. The broth micro-dilution method was used to determine the antimicrobial susceptibility of each isolate. The estimation of COWT values was satisfactory obtained at genus level for all antimicrobials except cefotaxime and erythromycin. This first step is an invitation for other research teams to increase the amount of antimicrobial resistance data collected. Then, robustness of our proposed provisional generic epidemiological cut-off values could be assessed by testing antimicrobial susceptibility of various Aeromonas collections.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...