Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
EMBO J ; 42(13): e114542, 2023 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-37272260

RESUMO

How mitophagy is turned on to remove damaged or excess mitochondria from cells has been well-studied, but less is known about how the pathway is turned off to avoid "over-eating" of mitochondria under basal conditions. Three new studies now reveal the disease-associated FBXL4 protein as an important negative regulator of constitutive mitophagy, controlling the stability of mitophagy receptors BNIP3 and NIX.


Assuntos
Mitocôndrias , Mitofagia , Mitocôndrias/metabolismo , Fagocitose , Proteínas de Membrana/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo
2.
J Med Chem ; 66(11): 7645-7656, 2023 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-37248632

RESUMO

Ubiquitin phosphorylation by the mitochondrial protein kinase PTEN-induced kinase 1 (PINK1), upon mitochondrial depolarization, is an important intermediate step in the recycling of damaged mitochondria via mitophagy. As mutations in PINK1 can cause early-onset Parkinson's disease (PD), there has been a growing interest in small-molecule activators of PINK1-mediated mitophagy as potential PD treatments. Herein, we show that N6-substituted adenosines, such as N6-(2-furanylmethyl)adenosine (known as kinetin riboside) and N6-benzyladenosine, activate PINK1 in HeLa cells and induce PINK1-dependent mitophagy in primary mouse fibroblasts. Interestingly, pre-treatment of HeLa cells and astrocytes with these compounds inhibited elevated ubiquitin phosphorylation that is induced by established mitochondrial depolarizing agents, carbonyl cyanide m-chlorophenyl-hydrazine and niclosamide. Together, this highlights N6-substituted adenosines as progenitor PINK1 activators that could potentially be developed, in the future, as treatments for aged and sporadic PD patients who have elevated phosphorylated ubiquitin levels in the brain.


Assuntos
Mitofagia , Ubiquitina , Humanos , Animais , Camundongos , Fosforilação , Ubiquitina/metabolismo , Células HeLa , Proteínas Quinases/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
3.
Autophagy ; 19(7): 2162-2163, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36572844

RESUMO

Mitochondria, often called "the powerhouse" of the cell due to their role as the main energy supplier, regulate numerous complex processes including intracellular calcium homeostasis, reactive oxygen species (ROS) production, regulation of immune responses, and apoptosis. So, mitochondria are a fundamental metabolic hub that also control cell survival and cell death. However, they are not unique in all these functions. Indeed, peroxisomes are small cytoplasmic organelles that also ensure metabolic functions such as fatty acid oxidation and ROS production. This common relationship also extends beyond function as peroxisomes themselves can form from mitochondrial-derived precursors. Given this interconnection between mitochondria and peroxisomes involving biogenesis and function, in our recent work we determined if their turnover was also linked.


Assuntos
Autofagia , Peroxissomos , Espécies Reativas de Oxigênio/metabolismo , Peroxissomos/metabolismo , Mitocôndrias/metabolismo
4.
EMBO J ; 41(24): e111115, 2022 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-36215693

RESUMO

Mitochondria and peroxisomes are closely related metabolic organelles, both in terms of origin and in terms of function. Mitochondria and peroxisomes can also be turned over by autophagy, in processes termed mitophagy and pexophagy, respectively. However, despite their close relationship, it is not known if both organelles are turned over under similar conditions, and if so, how this might be coordinated molecularly. Here, we find that multiple selective autophagy pathways are activated upon iron chelation and show that mitophagy and pexophagy occur in a BNIP3L/NIX-dependent manner. We reveal that the outer mitochondrial membrane-anchored NIX protein, previously described as a mitophagy receptor, also independently localises to peroxisomes and drives pexophagy. We show this process happens in vivo, with mouse tissue that lacks NIX having a higher peroxisomal content. We further show that pexophagy is stimulated under the same physiological conditions that activate mitophagy, including cardiomyocyte and erythrocyte differentiation. Taken together, our work uncovers a dual role for NIX, not only in mitophagy but also in pexophagy, thus illustrating the interconnection between selective autophagy pathways.


Assuntos
Macroautofagia , Mitofagia , Camundongos , Animais , Peroxissomos/metabolismo , Proteínas Reguladoras de Apoptose/metabolismo , Autofagia/fisiologia , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo
5.
Methods Mol Biol ; 1949: 137-152, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30790254

RESUMO

Cholesterol, a major component of biological membranes, is rapidly trafficked and unevenly distributed between organelles. Anomalies of intracellular cholesterol distribution are the hallmark of a number of lysosomal lipid storage disorders. A major methodological obstacle for studying cholesterol trafficking is tracing this molecule in situ. The use of fluorescent probes that specifically bind cholesterol allows the visualization and imaging of cellular cholesterol. Here, we describe a series of assays optimized for quantifying free cholesterol in cell populations and at the single cell level, both at the plasma membrane and inside cells. These methods use two fluorescent probes: the D4 fragment of perfringolysin O fused to GFP (GFP-D4) and the polyene macrolide filipin. First, we report a robust method for quantifying plasma membrane cholesterol by flow cytometry using the GFP-D4 probe. Second, to optically distinguish and quantify intracellular cholesterol accumulation, we have adapted the classical filipin cholesterol staining protocol. Indeed, we observed that treatment of living cells with methyl-ß-cyclodextrin, a chemical known to extract cholesterol from the plasma membrane, improves the visualization of the intracellular cholesterol pool with filipin. To complement these staining procedures, we developed an image analysis protocol based on image segmentation to quantify, in a robust manner, intracellular cholesterol stained with filipin. Thus, this chapter is a guideline for cellular cholesterol staining and signal quantification.


Assuntos
Membrana Celular/metabolismo , Colesterol/metabolismo , Filipina/metabolismo , Genes Reporter , Proteínas Recombinantes de Fusão , Endossomos/metabolismo , Citometria de Fluxo , Processamento de Imagem Assistida por Computador , Microscopia Confocal
6.
EMBO Rep ; 19(7)2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29858488

RESUMO

Membrane contact sites are cellular structures that mediate interorganelle exchange and communication. The two major tether proteins of the endoplasmic reticulum (ER), VAP-A and VAP-B, interact with proteins from other organelles that possess a small VAP-interacting motif, named FFAT [two phenylalanines (FF) in an acidic track (AT)]. In this study, using an unbiased proteomic approach, we identify a novel ER tether named motile sperm domain-containing protein 2 (MOSPD2). We show that MOSPD2 possesses a Major Sperm Protein (MSP) domain which binds FFAT motifs and consequently allows membrane tethering in vitro MOSPD2 is an ER-anchored protein, and it interacts with several FFAT-containing tether proteins from endosomes, mitochondria, or Golgi. Consequently, MOSPD2 and these organelle-bound proteins mediate the formation of contact sites between the ER and endosomes, mitochondria, or Golgi. Thus, we characterized here MOSPD2, a novel tethering component related to VAP proteins, bridging the ER with a variety of distinct organelles.


Assuntos
Retículo Endoplasmático/genética , Proteínas de Membrana/genética , Receptores de Quimiocinas/genética , Proteínas de Transporte Vesicular/genética , Motivos de Aminoácidos/genética , Animais , Sítios de Ligação/genética , Retículo Endoplasmático/metabolismo , Endossomos/genética , Complexo de Golgi/genética , Humanos , Masculino , Camundongos , Membranas Mitocondriais/metabolismo , Ligação Proteica , Proteômica , Espermatozoides/metabolismo
7.
EMBO J ; 36(10): 1412-1433, 2017 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-28377464

RESUMO

StAR-related lipid transfer domain-3 (STARD3) is a sterol-binding protein that creates endoplasmic reticulum (ER)-endosome contact sites. How this protein, at the crossroad between sterol uptake and synthesis pathways, impacts the intracellular distribution of this lipid was ill-defined. Here, by using in situ cholesterol labeling and quantification, we demonstrated that STARD3 induces cholesterol accumulation in endosomes at the expense of the plasma membrane. STARD3-mediated cholesterol routing depends both on its lipid transfer activity and its ability to create ER-endosome contacts. Corroborating this, in vitro reconstitution assays indicated that STARD3 and its ER-anchored partner, Vesicle-associated membrane protein-associated protein (VAP), assemble into a machine that allows a highly efficient transport of cholesterol within membrane contacts. Thus, STARD3 is a cholesterol transporter scaffolding ER-endosome contacts and modulating cellular cholesterol repartition by delivering cholesterol to endosomes.


Assuntos
Proteínas de Transporte/metabolismo , Membrana Celular/metabolismo , Colesterol/metabolismo , Retículo Endoplasmático/metabolismo , Endossomos/metabolismo , Proteínas de Membrana/metabolismo , Transporte Biológico , Células HeLa , Humanos , Ligação Proteica , Proteínas de Transporte Vesicular/metabolismo
8.
Biochem Soc Trans ; 44(2): 493-8, 2016 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-27068960

RESUMO

Membrane contact sites (MCSs) are subcellular regions where the membranes of distinct organelles come into close apposition. These specialized areas of the cell, which are involved in inter-organelle metabolite exchange, are scaffolded by specific complexes. STARD3 [StAR (steroidogenic acute regulatory protein)-related lipid transfer domain-3] and its close paralogue STARD3NL (STARD3 N-terminal like) are involved in the formation of contacts between late-endosomes and the endoplasmic reticulum (ER). The lipid transfer protein (LTP) STARD3 and STARD3NL, which are both anchored on the limiting membrane of late endosomes (LEs), interact with ER-anchored VAP [VAMP (vesicle-associated membrane protein)-associated protein] (VAP-A and VAP-B) proteins. This direct interaction allows ER-endosome contact formation. STARD3 or STARD3NL-mediated ER-endosome contacts, which affect endosome dynamics, are believed to be involved in cholesterol transport.


Assuntos
Proteínas de Transporte/metabolismo , Retículo Endoplasmático/metabolismo , Endossomos/metabolismo , Proteínas de Membrana/metabolismo , Sítios de Ligação , Transporte Biológico , Colesterol/metabolismo , Humanos , Ligação Proteica
9.
Tissue Barriers ; 2(4): e975597, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25610759

RESUMO

Tumor necrosis factor (TNF) receptor-associated factor 4 (TRAF4), a protein localized in TJs in normal epithelial cells, is frequently overexpressed in carcinomas. We recently found that TRAF4 impedes TJ formation/stability and favors cell migration, 2 hallmarks of cancer progression. In addition TRAF4 contributes to the TGF-ß-induced epithelial-mesenchymal transition (EMT), metastasis, and p53 destabilization. TRAF4 recruitment to TJs is a prerequisite for its biological function on TJ formation/stability and on cell migration. Interestingly, TRAF4 is targeted to TJs through lipid-binding. The trimeric TRAF domain of TRAF4 binds 3 phosphoinositide (PIP) molecules. These findings shed new light on the role of TRAF4 in cancer progression; they provide a novel link between lipid metabolism and cancer progression and support the notion that TRAF4 could be a relevant target for cancer therapies. TRAF4 belongs to a family of 7 human proteins involved in different biological processes, such as inflammation, immunity and embryonic development. While the lipid-binding ability of the TRAF domain is conserved among the whole TRAF protein family, its functional role remains to be established for the remaining TRAF proteins.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...