Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Nanosci Nanotechnol ; 9(2): 1268-71, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19441503

RESUMO

Techniques for characterisation and methods for fabrication at the nanoscale are becoming more powerful, giving new insights into the spatial relationships between nanostructures and greater control over their development. A case in point is the application of state-of-the-art focused ion beam technology (FIB), in combination with high-performance scanning electron microscopy (SEM), to generate cross-sections into bulk material and create a sequential image series. These two-dimensional images can then be correlated and rendered into a three-dimensional representation. In addition, site-specific, ultra-thin lamellar specimens can be made for observation in the transmission electron microscope (TEM) or scanning transmission electron microscope (STEM), with the further advantage that FIB cutting through hard-soft interfaces poses fewer difficulties compared to ultramicrotomy. Another big impact of FIB SEM on nanotechnology is the ability to use either ions or electrons to perform advanced nanolithography, via etching or chemical vapour deposition. In all cases, numerous parameters must be considered in order to achieve high quality results, particularly where stringent critical dimensions are required or when dealing with challenges such as electrically insulating and/or soft materials. We have developed strategies to address these issues, enabling results across a wide range of nanotechnology applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...