Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biomed Res Int ; 2015: 530352, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26587538

RESUMO

In case of chest pain, immediate diagnosis of myocardial ischemia is required to respond with an appropriate treatment. The diagnostic capability of the electrocardiogram (ECG), however, is strongly limited for ischemic events that do not lead to ST elevation. This computational study investigates the potential of different electrode setups in detecting early ischemia at 10 minutes after onset: standard 3-channel and 12-lead ECG as well as body surface potential maps (BSPMs). Further, it was assessed if an additional ECG electrode with optimized position or the right-sided Wilson leads can improve sensitivity of the standard 12-lead ECG. To this end, a simulation study was performed for 765 different locations and sizes of ischemia in the left ventricle. Improvements by adding a single, subject specifically optimized electrode were similar to those of the BSPM: 2-11% increased detection rate depending on the desired specificity. Adding right-sided Wilson leads had negligible effect. Absence of ST deviation could not be related to specific locations of the ischemic region or its transmurality. As alternative to the ST time integral as a feature of ST deviation, the K point deviation was introduced: the baseline deviation at the minimum of the ST-segment envelope signal, which increased 12-lead detection rate by 7% for a reasonable threshold.


Assuntos
Simulação por Computador , Eletrocardiografia/métodos , Modelos Cardiovasculares , Isquemia Miocárdica/fisiopatologia , Eletrodos , Humanos
2.
Artigo em Inglês | MEDLINE | ID: mdl-26793704

RESUMO

Computational models of cardiac electrophysiology provided insights into arrhythmogenesis and paved the way toward tailored therapies in the last years. To fully leverage in silico models in future research, these models need to be adapted to reflect pathologies, genetic alterations, or pharmacological effects, however. A common approach is to leave the structure of established models unaltered and estimate the values of a set of parameters. Today's high-throughput patch clamp data acquisition methods require robust, unsupervised algorithms that estimate parameters both accurately and reliably. In this work, two classes of optimization approaches are evaluated: gradient-based trust-region-reflective and derivative-free particle swarm algorithms. Using synthetic input data and different ion current formulations from the Courtemanche et al. electrophysiological model of human atrial myocytes, we show that neither of the two schemes alone succeeds to meet all requirements. Sequential combination of the two algorithms did improve the performance to some extent but not satisfactorily. Thus, we propose a novel hybrid approach coupling the two algorithms in each iteration. This hybrid approach yielded very accurate estimates with minimal dependency on the initial guess using synthetic input data for which a ground truth parameter set exists. When applied to measured data, the hybrid approach yielded the best fit, again with minimal variation. Using the proposed algorithm, a single run is sufficient to estimate the parameters. The degree of superiority over the other investigated algorithms in terms of accuracy and robustness depended on the type of current. In contrast to the non-hybrid approaches, the proposed method proved to be optimal for data of arbitrary signal to noise ratio. The hybrid algorithm proposed in this work provides an important tool to integrate experimental data into computational models both accurately and robustly allowing to assess the often non-intuitive consequences of ion channel-level changes on higher levels of integration.

3.
Europace ; 16 Suppl 4: iv30-iv38, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25362168

RESUMO

AIMS: The clinical efficacy in preventing the recurrence of atrial fibrillation (AF) is higher for amiodarone than for dronedarone. Moreover, pharmacotherapy with these drugs is less successful in patients with remodelled substrate induced by chronic AF (cAF) and patients suffering from familial AF. To date, the reasons for these phenomena are only incompletely understood. We analyse the effects of the drugs in a computational model of atrial electrophysiology. METHODS AND RESULTS: The Courtemanche-Ramirez-Nattel model was adapted to represent cAF remodelled tissue and hERG mutations N588K and L532P. The pharmacodynamics of amiodarone and dronedarone were investigated with respect to their dose and heart rate dependence by evaluating 10 descriptors of action potential morphology and conduction properties. An arrhythmia score was computed based on a subset of these biomarkers and analysed regarding circadian variation of drug concentration and heart rate. Action potential alternans at high frequencies was observed over the whole dronedarone concentration range at high frequencies, while amiodarone caused alternans only in a narrow range. The total score of dronedarone reached critical values in most of the investigated dynamic scenarios, while amiodarone caused only minor score oscillations. Compared with the other substrates, cAF showed significantly different characteristics resulting in a lower amiodarone but higher dronedarone concentration yielding the lowest score. CONCLUSION: Significant differences exist in the frequency and concentration-dependent effects between amiodarone and dronedarone and between different atrial substrates. Our results provide possible explanations for the superior efficacy of amiodarone and may aid in the design of substrate-specific pharmacotherapy for AF.


Assuntos
Amiodarona/análogos & derivados , Amiodarona/uso terapêutico , Antiarrítmicos/uso terapêutico , Fibrilação Atrial/terapia , Simulação por Computador , Átrios do Coração/efeitos dos fármacos , Frequência Cardíaca/efeitos dos fármacos , Modelos Cardiovasculares , Potenciais de Ação , Amiodarona/farmacocinética , Antiarrítmicos/farmacocinética , Fibrilação Atrial/diagnóstico , Fibrilação Atrial/genética , Fibrilação Atrial/metabolismo , Fibrilação Atrial/fisiopatologia , Relação Dose-Resposta a Droga , Dronedarona , Canal de Potássio ERG1 , Canais de Potássio Éter-A-Go-Go/genética , Canais de Potássio Éter-A-Go-Go/metabolismo , Átrios do Coração/fisiopatologia , Humanos , Mutação , Análise Numérica Assistida por Computador , Recidiva , Fatores de Tempo , Resultado do Tratamento
4.
IEEE Trans Biomed Eng ; 61(9): 2467-78, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24816474

RESUMO

Radiofrequency ablation (RFA) therapy is the gold standard in interventional treatment of many cardiac arrhythmias. A major obstacle is nontransmural lesions, leading to recurrence of arrhythmias. Recent clinical studies have suggested intracardiac electrogram (EGM) criteria as a promising marker to evaluate lesion development. Seeking for a deeper understanding of underlying mechanisms, we established a simulation approach for acute RFA lesions. Ablation lesions were modeled by a passive necrotic core surrounded by a borderzone with properties of heated myocardium. Herein, conduction velocity and electrophysiological properties were altered. We simulated EGMs during RFA to study the relation between lesion formation and EGM changes using the bidomain model. Simulations were performed on a three-dimensional setup including a geometrically detailed representation of the catheter with highly conductive electrodes. For validation, EGMs recorded during RFA procedures in five patients were analyzed and compared to simulation results. Clinical data showed major changes in the distal unipolar EGM. During RFA, the negative peak amplitude decreased up to 104% and maximum negative deflection was up to 88% smaller at the end of the ablation sequence. These changes mainly occurred in the first 10 s after ablation onset. Simulated unipolar EGMs reproduced the clinical changes, reaching up to 83% negative peak amplitude reduction and 80% decrease in maximum negative deflection for transmural lesions. In future studies, the established model may enable the development of further EGM criteria for transmural lesions even for complex geometries in order to support clinical therapy.


Assuntos
Ablação por Cateter/efeitos adversos , Eletrocardiografia/métodos , Traumatismos Cardíacos/fisiopatologia , Bases de Dados Factuais , Eletrodos , Coração/fisiopatologia , Humanos , Modelos Teóricos
5.
Europace ; 16(3): 435-43, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24569898

RESUMO

AIMS: Human ether-à-go-go-related gene (hERG) missense mutations N588K and L532P are both associated with atrial fibrillation (AF). However, the underlying gain-of-function mechanism is different. The aim of this computational study is to assess and understand the arrhythmogenic mechanisms of these genetic disorders on the cellular and tissue level as a basis for the improvement of therapeutic strategies. METHODS AND RESULTS: The IKr formulation of an established model of human atrial myocytes was adapted by using the measurement data of wild-type and mutant hERG channels. Restitution curves of the action potential duration and its slope, effective refractory period (ERP), conduction velocity, reentry wavelength (WL), and the vulnerable window (VW) were determined in a one-dimensional (1D) tissue strand. Moreover, spiral wave inducibility and rotor lifetime in a 2D tissue patch were evaluated. The two mutations caused an increase in IKr regarding both peak amplitude and current integral, whereas the duration during which IKr is active was decreased. The WL was reduced due to a shorter ERP. Spiral waves could be initiated by using mutation models as opposed to the control case. The frequency dependency of the VW was reversed. CONCLUSION: Both mutations showed an increased arrhythmogenicity due to decreased refractory time in combination with a more linear repolarization phase. The effects were more pronounced for mutation L532P than for N588K. Furthermore, spiral waves presented higher stability and a more regular pattern for L532P. These in silico investigations unveiling differences of mutations affecting the same ion channel may help to advance genotype-guided AF prevention and therapy strategies.


Assuntos
Fibrilação Atrial/fisiopatologia , Canais de Potássio Éter-A-Go-Go/genética , Átrios do Coração/fisiopatologia , Sistema de Condução Cardíaco/fisiopatologia , Modelos Cardiovasculares , Modelos Genéticos , Células Musculares , Potenciais de Ação/genética , Simulação por Computador , Canal de Potássio ERG1 , Humanos , Ativação do Canal Iônico/genética , Potenciais da Membrana/genética , Mutação/genética , Polimorfismo de Nucleotídeo Único/genética
6.
PLoS One ; 8(12): e83179, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24376659

RESUMO

Inhibition of the atrial ultra-rapid delayed rectifier potassium current (I Kur) represents a promising therapeutic strategy in the therapy of atrial fibrillation. However, experimental and clinical data on the antiarrhythmic efficacy remain controversial. We tested the hypothesis that antiarrhythmic effects of I Kur inhibitors are dependent on kinetic properties of channel blockade. A mathematical description of I Kur blockade was introduced into Courtemanche-Ramirez-Nattel models of normal and remodeled atrial electrophysiology. Effects of five model compounds with different kinetic properties were analyzed. Although a reduction of dominant frequencies could be observed in two dimensional tissue simulations for all compounds, a reduction of spiral wave activity could be only be detected in two cases. We found that an increase of the percent area of refractory tissue due to a prolongation of the wavelength seems to be particularly important. By automatic tracking of spiral tip movement we find that increased refractoriness resulted in rotor extinction caused by an increased spiral-tip meandering. We show that antiarrhythmic effects of I Kur inhibitors are dependent on kinetic properties of blockade. We find that an increase of the percent area of refractory tissue is the underlying mechanism for an increased spiral-tip meandering, resulting in the extinction of re-entrant circuits.


Assuntos
Antiarrítmicos/farmacologia , Fibrilação Atrial/tratamento farmacológico , Canais de Potássio de Retificação Tardia/antagonistas & inibidores , Átrios do Coração/efeitos dos fármacos , Modelos Biológicos , Bloqueadores dos Canais de Potássio/farmacologia , Potenciais de Ação/efeitos dos fármacos , Fibrilação Atrial/metabolismo , Fibrilação Atrial/fisiopatologia , Simulação por Computador , Canais de Potássio de Retificação Tardia/metabolismo , Eletrocardiografia , Átrios do Coração/metabolismo , Átrios do Coração/fisiopatologia , Humanos , Cinética , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia
7.
Europace ; 14 Suppl 5: v90-v96, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23104920

RESUMO

AIMS: Amiodarone and cisapride are both known to prolong the QT interval, yet the two drugs have different effects on arrhythmia. Cisapride can cause torsades de pointes while amiodarone is found to be anti-arrhythmic. A computational model was used to investigate the action of these two drugs. METHODS AND RESULTS: In a biophysically detailed model, the ion current conductivities affected by both drugs were reduced in order to simulate the pharmacological effects in healthy and ischaemic cells. Furthermore, restitution curves of the action potential duration (APD), effective refractory period, conduction velocity, wavelength, and the vulnerable window were determined in a one-dimensional (1D) tissue strand. Moreover, cardiac excitation propagation was computed in a 3D model of healthy ventricles. The corresponding body surface potentials were calculated and standard 12-lead electrocardiograms were derived. Both cisapride and amiodarone caused a prolongation of the QT interval and the refractory period. However, cisapride did not significantly alter the conduction-related properties, such as e.g. the wavelength or vulnerable window, whereas amiodarone had a larger impact on them. It slightly flattened the APD restitution slope and furthermore reduced the conduction velocity and wavelength. CONCLUSION: Both drugs show similar prolongation of the QT interval, although they present different electrophysiological properties in the single-cell as well as in tissue simulations of cardiac excitation propagation. These computer simulations help to better understand the underlying mechanisms responsible for the initiation or termination of arrhythmias caused by amiodarone and cisapride.


Assuntos
Amiodarona/administração & dosagem , Arritmias Cardíacas/tratamento farmacológico , Arritmias Cardíacas/fisiopatologia , Cisaprida/administração & dosagem , Sistema de Condução Cardíaco/fisiopatologia , Ventrículos do Coração/fisiopatologia , Modelos Cardiovasculares , Antiarrítmicos/administração & dosagem , Simulação por Computador , Quimioterapia Assistida por Computador/métodos , Eletrocardiografia/efeitos dos fármacos , Sistema de Condução Cardíaco/efeitos dos fármacos , Ventrículos do Coração/efeitos dos fármacos , Humanos , Agonistas do Receptor de Serotonina/administração & dosagem
8.
Med Biol Eng Comput ; 50(8): 773-99, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22718317

RESUMO

This review article gives a comprehensive survey of the progress made in computational modeling of the human atria during the last 10 years. Modeling the anatomy has emerged from simple "peanut"-like structures to very detailed models including atrial wall and fiber direction. Electrophysiological models started with just two cellular models in 1998. Today, five models exist considering e.g. details of intracellular compartments and atrial heterogeneity. On the pathological side, modeling atrial remodeling and fibrotic tissue are the other important aspects. The bridge to data that are measured in the catheter laboratory and on the body surface (ECG) is under construction. Every measurement can be used either for model personalization or for validation. Potential clinical applications are briefly outlined and future research perspectives are suggested.


Assuntos
Potenciais de Ação/fisiologia , Função Atrial/fisiologia , Eletrocardiografia/métodos , Sistema de Condução Cardíaco/fisiologia , Modelos Cardiovasculares , Miócitos Cardíacos/fisiologia , Animais , Simulação por Computador , Humanos
9.
Front Physiol ; 3: 487, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23316167

RESUMO

Mathematical modeling of cardiac electrophysiology is an insightful method to investigate the underlying mechanisms responsible for arrhythmias such as atrial fibrillation (AF). In past years, five models of human atrial electrophysiology with different formulations of ionic currents, and consequently diverging properties, have been published. The aim of this work is to give an overview of strengths and weaknesses of these models depending on the purpose and the general requirements of simulations. Therefore, these models were systematically benchmarked with respect to general mathematical properties and their ability to reproduce certain electrophysiological phenomena, such as action potential (AP) alternans. To assess the models' ability to replicate modified properties of human myocytes and tissue in cardiac disease, electrical remodeling in chronic atrial fibrillation (cAF) was chosen as test case. The healthy and remodeled model variants were compared with experimental results in single-cell, 1D and 2D tissue simulations to investigate AP and restitution properties, as well as the initiation of reentrant circuits.

10.
IEEE Trans Biomed Eng ; 58(10): 2961-4, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21672673

RESUMO

Acute cardiac ischemia, which is caused by the occlusion of a coronary artery, often leads to lethal ventricular arrhythmias or heart failure. The early diagnosis of this pathology is based on changes of the electrocardiogram (ECG), i.e., mainly shifts of the ST segment. However, the underlying mechanisms responsible for these shifts are not completely understood. Furthermore, clinical observations indicate that some acute ischemia cases can hardly be detected using standard 12-lead ECG only. Therefore, multiscale computer simulations of cardiac ischemia using realistic models of human ventricles were carried out in this work. For this purpose, the transmembrane voltage distributions in the heart and the corresponding body surface potentials were computed with varying transmural extent of the ischemic region at different ischemia stages. Some of the simulated ischemia cases were " electrically silent," i.e., they could hardly be identified in the 12-lead ECG.


Assuntos
Mapeamento Potencial de Superfície Corporal/métodos , Sistema de Condução Cardíaco/fisiopatologia , Isquemia Miocárdica/fisiopatologia , Doença Aguda , Simulação por Computador , Ventrículos do Coração/anatomia & histologia , Ventrículos do Coração/patologia , Ventrículos do Coração/fisiopatologia , Humanos , Processamento de Imagem Assistida por Computador , Modelos Cardiovasculares , Isquemia Miocárdica/patologia , Processamento de Sinais Assistido por Computador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA