Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Geroscience ; 46(2): 2033-2049, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37801203

RESUMO

Myostatin negatively regulates skeletal muscle growth and appears upregulated in human obesity and associated with insulin resistance. However, observations are confounded by ageing, and the mechanisms responsible are unknown. The aim of this study was to delineate between the effects of excess adiposity, insulin resistance and ageing on myostatin mRNA expression in human skeletal muscle and to investigate causative factors using in vitro models. An in vivo cross-sectional analysis of human skeletal muscle was undertaken to isolate effects of excess adiposity and ageing per se on myostatin expression. In vitro studies employed human primary myotubes to investigate the potential involvement of cross-talk between subcutaneous adipose tissue (SAT) and skeletal muscle, and lipid-induced insulin resistance. Skeletal muscle myostatin mRNA expression was greater in aged adults with excess adiposity than age-matched adults with normal adiposity (2.0-fold higher; P < 0.05) and occurred concurrently with altered expression of genes involved in the maintenance of muscle mass but did not differ between younger and aged adults with normal adiposity. Neither chronic exposure to obese SAT secretome nor acute elevation of fatty acid availability (which induced insulin resistance) replicated the obesity-mediated upregulation of myostatin mRNA expression in vitro. In conclusion, skeletal muscle myostatin mRNA expression is uniquely upregulated in aged adults with excess adiposity and insulin resistance but not by ageing alone. This does not appear to be mediated by the SAT secretome or by lipid-induced insulin resistance. Thus, factors intrinsic to skeletal muscle may be responsible for the obesity-mediated upregulation of myostatin, and future work to establish causality is required.


Assuntos
Resistência à Insulina , Idoso , Humanos , Pessoa de Meia-Idade , Adiposidade/genética , Envelhecimento/genética , Estudos Transversais , Resistência à Insulina/genética , Lipídeos , Músculo Esquelético/metabolismo , Miostatina/genética , Miostatina/metabolismo , Obesidade/genética , Obesidade/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
2.
Clin Nutr ; 41(8): 1623-1635, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35764009

RESUMO

BACKGROUND: Obesity and insulin resistance are associated with an impaired sensitivity to anabolic stimuli such as dietary protein (anabolic resistance). Omega-3 polyunsaturated fatty acids (n-3 PUFA) may be protective against the deleterious effects of saturated fatty acids (SFA) on insulin resistance. However, the contribution of excess fat consumption to anabolic and insulin resistance and the interaction between SFA and n-3 PUFA is not well studied. AIM: The primary aim of this study was to investigate the effects of an oral fat pre-load, with or without the partial substitution of SFA with fish oil (FO)-derived n-3 PUFA, on indices of insulin and anabolic sensitivity in response to subsequent dietary protein and carbohydrate (dextrose) co-ingestion. METHODS: Eight middle-aged males with overweight or obesity (52.8 ± 2.0 yr, BMI 31.8 ± 1.4 kg·m-2) ingested either an SFA, or isoenergetic SFA and FO emulsion (FO), or water/control (Con), 4 h prior to a bolus of milk protein and dextrose. RESULTS: Lipid ingestion (in particular FO) impaired the early postprandial uptake of branched chain amino acids (BCAA) into the skeletal muscle in response to protein and dextrose, and attenuated the peak glycaemic response, but was not accompanied by differences in whole body (Matsuda Index: Con: 4.66 ± 0.89, SFA: 5.10 ± 0.94 and FO: 4.07 ± 0.59) or peripheral (forearm glucose netAUC: Con: 521.7 ± 101.7; SFA: 470.2 ± 125.5 and FO: 495.3 ± 101.6 µmol·min-1·100 g lean mass·min [t = 240-420 min]) insulin sensitivity between visits. Postprandial whole body fat oxidation was affected by visit (P = 0.024) with elevated rates in SFA and FO, relative to Con (1.85 ± 0.55; 2.19 ± 0.21 and 0.65 ± 0.35 kJ·h-1·kg-1 lean body mass, respectively), however muscle uptake of free fatty acids (FFA) was unaffected. CONCLUSION: Oral lipid preloads, consisting of SFA and FO, impair the early postprandial BCAA uptake into skeletal muscle, which occurs independent of changes in insulin sensitivity. CLINICAL TRIAL REGISTRY NUMBER: ClinicalTrials.gov Identifier NCT03146286.


Assuntos
Ácidos Graxos Ômega-3 , Resistência à Insulina , Glicemia/metabolismo , Estudos Cross-Over , Gorduras na Dieta/farmacologia , Proteínas Alimentares , Ingestão de Alimentos , Ácidos Graxos , Óleos de Peixe/farmacologia , Humanos , Masculino , Obesidade/metabolismo , Sobrepeso , Período Pós-Prandial
3.
Sci Transl Med ; 13(598)2021 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-34135111

RESUMO

Intermittent fasting may impart metabolic benefits independent of energy balance by initiating fasting-mediated mechanisms. This randomized controlled trial examined 24-hour fasting with 150% energy intake on alternate days for 3 weeks in lean, healthy individuals (0:150; n = 12). Control groups involved a matched degree of energy restriction applied continuously without fasting (75% energy intake daily; 75:75; n = 12) or a matched pattern of fasting without net energy restriction (200% energy intake on alternate days; 0:200; n = 12). Primary outcomes were body composition, components of energy balance, and postprandial metabolism. Daily energy restriction (75:75) reduced body mass (-1.91 ± 0.99 kilograms) almost entirely due to fat loss (-1.75 ± 0.79 kilograms). Restricting energy intake via fasting (0:150) also decreased body mass (-1.60 ± 1.06 kilograms; P = 0.46 versus 75:75) but with attenuated reductions in body fat (-0.74 ± 1.32 kilograms; P = 0.01 versus 75:75), whereas fasting without energy restriction (0:200) did not significantly reduce either body mass (-0.52 ± 1.09 kilograms; P ≤ 0.04 versus 75:75 and 0:150) or fat mass (-0.12 ± 0.68 kilograms; P ≤ 0.05 versus 75:75 and 0:150). Postprandial indices of cardiometabolic health and gut hormones, along with the expression of key genes in subcutaneous adipose tissue, were not statistically different between groups (P > 0.05). Alternate-day fasting less effectively reduces body fat mass than a matched degree of daily energy restriction and without evidence of fasting-specific effects on metabolic regulation or cardiovascular health.


Assuntos
Jejum , Redução de Peso , Adulto , Composição Corporal , Peso Corporal , Restrição Calórica , Ingestão de Energia , Metabolismo Energético , Humanos , Obesidade
4.
Geroscience ; 43(1): 85-110, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33528828

RESUMO

Sarcopenia, broadly defined as the age-related decline in skeletal muscle mass, quality, and function, is associated with chronic low-grade inflammation and an increased likelihood of adverse health outcomes. The regulation of skeletal muscle mass with ageing is complex and necessitates a delicate balance between muscle protein synthesis and degradation. The secretion and transfer of cytokines, long non-coding RNAs (lncRNAs) and microRNAs (miRNAs), both discretely and within extracellular vesicles, have emerged as important communication channels between tissues. Some of these factors have been implicated in regulating skeletal muscle mass, function, and pathologies and may be perturbed by excessive adiposity. Indeed, adipose tissue participates in a broad spectrum of inter-organ communication and obesity promotes the accumulation of macrophages, cellular senescence, and the production and secretion of pro-inflammatory factors. Pertinently, age-related sarcopenia has been reported to be more prevalent in obesity; however, such effects are confounded by comorbidities and physical activity level. In this review, we provide evidence that adiposity may exacerbate age-related sarcopenia and outline some emerging concepts of adipose-skeletal muscle communication including the secretion and processing of novel myokines and adipokines and the role of extracellular vesicles in mediating inter-tissue cross talk via lncRNAs and miRNAs in the context of sarcopenia, ageing, and obesity. Further research using advances in proteomics, transcriptomics, and techniques to investigate extracellular vesicles, with an emphasis on translational, longitudinal human studies, is required to better understand the physiological significance of these factors, the impact of obesity upon them, and their potential as therapeutic targets in combating muscle wasting.


Assuntos
Tecido Adiposo , Sarcopenia , Adipocinas , Envelhecimento , Humanos , Músculo Esquelético
5.
J Appl Physiol (1985) ; 127(6): 1763-1771, 2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31622161

RESUMO

The aim of this study was to determine the chronic (≥72 h postexercise) effects of high-intensity interval training (HIIT) on postprandial lipemia and metabolic markers in healthy volunteers. Eight physically active young men (mean ± SD: age 22 ± 3 yr, height 1.77 ± 0.07 m, body mass 67.7 ± 6.2 kg) underwent two 6-h mixed-meal tolerance tests and resting vastus lateralis muscle biopsies before the first session and ≥72 h after the final session of 4 wk of HIIT [16 sessions in total; 10 × 60-s bouts of cycling at 90% maximal oxygen uptake (V̇o2max), interspersed with 60-s intervals at 45% V̇o2max]. Arterialized and deep venous blood samples from across the forearm, brachial artery blood flow measurements, and whole-body indirect calorimetry data were obtained before, and at regular intervals for 6 h after, consumption of a standardized mixed meal. The main findings revealed that, when assessed ≥72 h postexercise, postprandial free fatty acid (FFA) uptake across the forearm was increased in response to exercise training (P = 0.025). However, 4 wk of HIIT did not alter fasting or postprandial circulating triglyceride concentrations or their tissue uptake, despite a 10.2% ± 7.7% improvement in V̇o2max (P = 0.004). Protein content of adipose triglyceride lipase in the vastus lateralis at rest was reduced by 25% ± 21% (P = 0.01). Collectively, these findings suggest that 4 wk of HIIT enhances postprandial clearance of FFA when assessed ≥72 h postexercise but does not confer persisting (training) adaptations in postprandial triglyceridemia.NEW & NOTEWORTHY When assessed ≥72 h after the last exercise session, 4 wk of high-intensity interval training (HIIT) did not improve triglyceridemia but enhanced free fatty acid uptake into muscle with a concurrent reduction in skeletal muscle adipose triglyceride lipase protein content. This suggests that previously reported acute reductions in postprandial triglyceridemia following a single bout of HIIT do not translate to sustained improvements after 4 wk of HIIT, supporting the concept of frequent exercise for the maintenance of lipemic control.


Assuntos
Exercício Físico/fisiologia , Hiperlipidemias/fisiopatologia , Período Pós-Prandial/fisiologia , Adaptação Fisiológica/fisiologia , Tecido Adiposo/metabolismo , Tecido Adiposo/fisiopatologia , Adulto , Jejum/fisiologia , Ácidos Graxos não Esterificados/metabolismo , Treinamento Intervalado de Alta Intensidade/métodos , Humanos , Hiperlipidemias/metabolismo , Masculino , Refeições/fisiologia , Consumo de Oxigênio/fisiologia , Fluxo Sanguíneo Regional/fisiologia , Triglicerídeos/metabolismo , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA