Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
1.
Structure ; 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38593795

RESUMO

Proteins that contain a highly conserved TLDc domain (Tre2/Bub2/Cdc16 LysM domain catalytic) offer protection against oxidative stress and are widely implicated in neurological health and disease. How this family of proteins exerts their function, however, is poorly understood. We have recently found that the yeast TLDc protein, Oxr1p, inhibits the proton pumping vacuolar ATPase (V-ATPase) by inducing disassembly of the pump. While loss of TLDc protein function in mammals shares disease phenotypes with V-ATPase defects, whether TLDc proteins impact human V-ATPase activity directly is unclear. Here we examine the effects of five human TLDc proteins, TLDC2, NCOA7, OXR1, TBC1D24, and mEAK7 on the activity of the human V-ATPase. We find that while TLDC2, TBC1D24, and the TLDc domains of OXR1 and NCOA7 inhibit V-ATPase by inducing enzyme disassembly, mEAK7 activates the pump. The data thus shed new light both on mammalian TLDc protein function and V-ATPase regulation.

3.
EMBO Rep ; 25(5): 2323-2347, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38565737

RESUMO

The eukaryotic vacuolar H+-ATPase (V-ATPase) is regulated by reversible disassembly into autoinhibited V1-ATPase and Vo proton channel subcomplexes. We recently reported that the TLDc protein Oxr1p induces V-ATPase disassembly in vitro. Whether and how Oxr1p is involved in enzyme disassembly in vivo, however, is not known. Here, using yeast genetics and fluorescence microscopy, we show that Oxr1p is essential for efficient V-ATPase disassembly in the cell. Supporting biochemical and biophysical in vitro experiments show that whereas Oxr1p-driven holoenzyme disassembly can occur in the absence of nucleotides, the presence of ATP greatly accelerates the process. ATP hydrolysis is needed, however, for subsequent release of Oxr1p so that the free V1 can adopt the autoinhibited conformation. Overall, our study unravels the molecular mechanism of Oxr1p-induced disassembly that occurs in vivo as part of the canonical V-ATPase regulation by reversible disassembly.


Assuntos
Trifosfato de Adenosina , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , ATPases Vacuolares Próton-Translocadoras , ATPases Vacuolares Próton-Translocadoras/metabolismo , ATPases Vacuolares Próton-Translocadoras/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Trifosfato de Adenosina/metabolismo , Hidrólise
4.
J Biol Chem ; 300(5): 107231, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38537700

RESUMO

Aggregation of leukocyte cell-derived chemotaxin 2 (LECT2) causes ALECT2, a systemic amyloidosis that affects the kidney and liver. Previous studies established that LECT2 fibrillogenesis is accelerated by the loss of its bound zinc ion and stirring/shaking. These forms of agitation create heterogeneous shear conditions, including air-liquid interfaces that denature proteins, that are not present in the body. Here, we determined the extent to which a more physiological form of mechanical stress-shear generated by fluid flow through a network of narrow channels-drives LECT2 fibrillogenesis. To mimic blood flow through the kidney, where LECT2 and other proteins form amyloid deposits, we developed a microfluidic device consisting of progressively branched channels narrowing from 5 mm to 20 µm in width. Shear was particularly pronounced at the branch points and in the smallest capillaries. Aggregation was induced within 24 h by shear levels that were in the physiological range and well below those required to unfold globular proteins such as LECT2. EM images suggested the resulting fibril ultrastructures were different when generated by laminar flow shear versus shaking/stirring. Importantly, results from the microfluidic device showed the first evidence that the I40V mutation accelerated fibril formation and increased both the size and the density of the aggregates. These findings suggest that kidney-like flow shear, in combination with zinc loss, acts in combination with the I40V mutation to trigger LECT2 amyloidogenesis. These microfluidic devices may be of general use for uncovering mechanisms by which blood flow induces misfolding and amyloidosis of circulating proteins.

5.
Nat Nanotechnol ; 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38374413

RESUMO

Liposomes as drug vehicles have advantages, such as payload protection, tunable carrying capacity and improved biodistribution. However, due to the dysfunction of targeting moieties and payload loss during preparation, immunoliposomes have yet to be favoured in commercial manufacturing. Here we report a chemical modification-free biophysical approach for producing immunoliposomes in one step through the self-assembly of a chimeric nanobody (cNB) into liposome bilayers. cNB consists of a nanobody against human epidermal growth factor receptor 2 (HER2), a flexible peptide linker and a hydrophobic single transmembrane domain. We determined that 64% of therapeutic compounds can be encapsulated into 100-nm liposomes, and up to 2,500 cNBs can be anchored on liposomal membranes without steric hindrance under facile conditions. Subsequently, we demonstrate that drug-loaded immunoliposomes increase cytotoxicity on HER2-overexpressing cancer cell lines by 10- to 20-fold, inhibit the growth of xenograft tumours by 3.4-fold and improve survival by more than twofold.

6.
bioRxiv ; 2023 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-37503176

RESUMO

Aggregation of leukocyte cell-derived chemotaxin 2 (LECT2) causes ALECT2, a systemic amyloidosis that affects the kidney and liver. Homozygosity of the I40V LECT2 mutation is believed to be necessary but not sufficient for the disease. Previous studies established that LECT2 fibrillogenesis is greatly accelerated by loss of its single bound zinc ion and stirring or shaking. These forms of agitation are often used to facilitate protein aggregation, but they create heterogeneous shear conditions, including air-liquid interfaces that denature proteins, that are not present in the body. Here, we determined the extent to which a more physiological form of mechanical stress-shear generated by fluid flow through a network of artery and capillary-sized channels-drives LECT2 fibrillogenesis. To mimic blood flow through the human kidney, where LECT2 and other proteins form amyloid deposits, we developed a microfluidic device consisting of progressively branched channels narrowing from 5 mm to 20 µm in width. Flow shear was particularly pronounced at the branch points and in the smallest capillaries, and this induced LECT2 aggregation much more efficiently than conventional shaking methods. EM images suggested the resulting fibril structures were different in the two conditions. Importantly, results from the microfluidic device showed the first evidence that the I40V mutation accelerated fibril formation and increased both size and density of the aggregates. These findings suggest that kidney-like flow shear, in combination with zinc loss, acts in combination with the I40V mutation to trigger LECT2 amyloidogenesis. These microfluidic devices may be of general use for uncovering the mechanisms by which blood flow induces misfolding and amyloidosis of circulating proteins.

7.
ACS Nano ; 17(11): 10857-10871, 2023 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-37261404

RESUMO

Nanopores are currently utilized as powerful tools for single-molecule protein sensing. The reporting signal typically requires protein analytes to enter the nanopore interior, yet a class of these sensors has emerged that allows targeted detection free in solution. This tactic eliminates the spatial limitation of nanopore confinement. However, probing proteins outside the nanopore implies numerous challenges associated with transducing the physical interactions in the aqueous phase into a reliable electrical signature. Hence, it necessitates extensive engineering and tedious optimization routes. These obstacles have prevented the widespread adoption of these sensors. Here, we provide an experimental strategy by developing and validating single-polypeptide-chain nanopores amenable to single-molecule and bulk-phase protein detection approaches. We utilize protein engineering, as well as nanopore and nanodisc technologies, to create nanopore sensors that can be integrated with an optical platform in addition to traditional electrical recordings. Using the optical modality over an ensemble of detectors accelerates these sensors' optimization process for a specific task. It also provides insights into how the construction of these single-molecule nanopore sensors influences their performance. These outcomes form a basis for evaluating engineered nanopores beyond the fundamental limits of the resistive-pulse technique.


Assuntos
Nanoporos , Peptídeos , Proteínas/análise , Eletricidade , Nanotecnologia/métodos
8.
Bioessays ; 45(7): e2200251, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37183929

RESUMO

Vacuolar ATPases (V-ATPases, V1 Vo -ATPases) are rotary motor proton pumps that acidify intracellular compartments, and, when localized to the plasma membrane, the extracellular space. V-ATPase is regulated by a unique process referred to as reversible disassembly, wherein V1 -ATPase disengages from Vo proton channel in response to diverse environmental signals. Whereas the disassembly step of this process is ATP dependent, the (re)assembly step is not, but requires the action of a heterotrimeric chaperone referred to as the RAVE complex. Recently, an alternative pathway of holoenzyme disassembly was discovered that involves binding of Oxidation Resistance 1 (Oxr1p), a poorly characterized protein implicated in oxidative stress response. Unlike conventional reversible disassembly, which depends on enzyme activity, Oxr1p induced dissociation can occur in absence of ATP. Yeast Oxr1p belongs to the family of TLDc domain containing proteins that are conserved from yeast to mammals, and have been implicated in V-ATPase function in a variety of tissues. This brief perspective summarizes what we know about the molecular mechanisms governing both reversible (ATP dependent) and Oxr1p driven (ATP independent) V-ATPase dissociation into autoinhibited V1 and Vo subcomplexes.


Assuntos
Proteínas de Saccharomyces cerevisiae , ATPases Vacuolares Próton-Translocadoras , Animais , Saccharomyces cerevisiae/metabolismo , Amor , Proteínas de Saccharomyces cerevisiae/metabolismo , ATPases Vacuolares Próton-Translocadoras/metabolismo , Trifosfato de Adenosina/metabolismo , Mamíferos/metabolismo
9.
Nano Lett ; 22(20): 8304-8311, 2022 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-36194390

RESUMO

Secondary lymphoid organs (SLOs) are an important target for mRNA delivery in various applications. While the current delivery method relies on the drainage of nanoparticles to lymph nodes by intramuscular (IM) or subcutaneous (SC) injections, an efficient mRNA delivery carrier for SLOs-targeting delivery by systemic administration (IV) is highly desirable but yet to be available. In this study, we developed an efficient SLOs-targeting carrier using phosphatidylserine (PS), a well-known signaling molecule that promotes the endocytic activity of phagocytes and cellular entry of enveloped viruses. We adopted these biomimetic strategies and added PS into the standard four-component MC3-based LNP formulation (PS-LNP) to facilitate the cellular uptake of immune cells beyond the charge-driven targeting principle commonly used today. As a result, PS-LNP performed efficient protein expression in both lymph nodes and the spleen after IV administration. In vitro and in vivo characterizations on PS-LNP demonstrated a monocyte/macrophage-mediated SLOs-targeting delivery mechanism.


Assuntos
Nanopartículas , Fosfatidilserinas , Nanopartículas/química , RNA Interferente Pequeno/genética , RNA Mensageiro/genética
10.
EMBO J ; 41(3): e109360, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-34918374

RESUMO

The vacuolar ATPase (V-ATPase) is a rotary motor proton pump that is regulated by an assembly equilibrium between active holoenzyme and autoinhibited V1 -ATPase and Vo proton channel subcomplexes. Here, we report cryo-EM structures of yeast V-ATPase assembled in vitro from lipid nanodisc reconstituted Vo and mutant V1 . Our analysis identified holoenzymes in three active rotary states, indicating that binding of V1 to Vo provides sufficient free energy to overcome Vo autoinhibition. Moreover, the structures suggest that the unequal spacing of Vo 's proton-carrying glutamic acid residues serves to alleviate the symmetry mismatch between V1 and Vo motors, a notion that is supported by mutagenesis experiments. We also uncover a structure of free V1 bound to Oxr1, a conserved but poorly characterized factor involved in the oxidative stress response. Biochemical experiments show that Oxr1 inhibits V1 -ATPase and causes disassembly of the holoenzyme, suggesting that Oxr1 plays a direct role in V-ATPase regulation.


Assuntos
Proteínas Mitocondriais/química , Estresse Oxidativo , Proteínas de Saccharomyces cerevisiae/química , ATPases Vacuolares Próton-Translocadoras/metabolismo , Sítios de Ligação , Microscopia Crioeletrônica , Holoenzimas/química , Mutagênese , Ligação Proteica , Multimerização Proteica , Proteínas de Saccharomyces cerevisiae/genética , ATPases Vacuolares Próton-Translocadoras/química , ATPases Vacuolares Próton-Translocadoras/genética
11.
J Biol Chem ; 297(2): 100964, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34270960

RESUMO

Vacuolar H+-ATPases (V-ATPases) are large, multisubunit proton pumps that acidify the lumen of organelles in virtually every eukaryotic cell and in specialized acid-secreting animal cells, the enzyme pumps protons into the extracellular space. In higher organisms, most of the subunits are expressed as multiple isoforms, with some enriched in specific compartments or tissues and others expressed ubiquitously. In mammals, subunit a is expressed as four isoforms (a1-4) that target the enzyme to distinct biological membranes. Mutations in a isoforms are known to give rise to tissue-specific disease, and some a isoforms are upregulated and mislocalized to the plasma membrane in invasive cancers. However, isoform complexity and low abundance greatly complicate purification of active human V-ATPase, a prerequisite for developing isoform-specific therapeutics. Here, we report the purification of an active human V-ATPase in native lipid nanodiscs from a cell line stably expressing affinity-tagged a isoform 4 (a4). We find that exogenous expression of this single subunit in HEK293F cells permits assembly of a functional V-ATPase by incorporation of endogenous subunits. The ATPase activity of the preparation is >95% sensitive to concanamycin A, indicating that the lipid nanodisc-reconstituted enzyme is functionally coupled. Moreover, this strategy permits purification of the enzyme's isolated membrane subcomplex together with biosynthetic assembly factors coiled-coil domain-containing protein 115, transmembrane protein 199, and vacuolar H+-ATPase assembly integral membrane protein 21. Our work thus lays the groundwork for biochemical characterization of active human V-ATPase in an a subunit isoform-specific manner and establishes a platform for the study of the assembly and regulation of the human holoenzyme.


Assuntos
ATPases Vacuolares Próton-Translocadoras , Transporte Biológico , Membrana Celular/metabolismo , Humanos , Saccharomyces cerevisiae/metabolismo
12.
J Biol Chem ; 296: 100446, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33617884

RESUMO

Aggregation of the circulating protein leukocyte-cell-derived chemotaxin 2 (LECT2) causes amyloidosis of LECT2 (ALECT2), one of the most prevalent forms of systemic amyloidosis affecting the kidney and liver. The I40V mutation is thought to be necessary but not sufficient for ALECT2, with a second, as-yet undetermined condition being required for the disease. EM, X-ray diffraction, NMR, and fluorescence experiments demonstrate that LECT2 forms amyloid fibrils in vitro in the absence of other proteins. Removal of LECT2's single bound Zn2+ appears to be obligatory for fibril formation. Zinc-binding affinity is strongly dependent on pH: 9-13 % of LECT2 is calculated to exist in the zinc-free state over the normal pH range of blood, with this fraction rising to 80 % at pH 6.5. The I40V mutation does not alter zinc-binding affinity or kinetics but destabilizes the zinc-free conformation. These results suggest a mechanism in which loss of zinc together with the I40V mutation leads to ALECT2.


Assuntos
Amiloide/química , Peptídeos e Proteínas de Sinalização Intercelular/química , Zinco/química , Amiloide/metabolismo , Humanos , Concentração de Íons de Hidrogênio , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Ressonância Magnética Nuclear Biomolecular , Ligação Proteica , Difração de Raios X , Zinco/metabolismo
13.
Mol Cell ; 80(3): 379-380, 2020 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-33157012

RESUMO

In this issue of Molecular Cell, Wang et al. (2020a) present near-atomic resolution cryoEM structures of a proton-pumping vacuolar ATPase from human cells, illuminating the glycosylation of integral subunits and identifying a novel and conserved glycolipid ligand.


Assuntos
Açúcares , ATPases Vacuolares Próton-Translocadoras , Microscopia Crioeletrônica , Humanos , ATPases Vacuolares Próton-Translocadoras/genética , ATPases Vacuolares Próton-Translocadoras/metabolismo
14.
Sci Adv ; 6(41)2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33028525

RESUMO

Rotary vacuolar adenosine triphosphatases (V-ATPases) drive transmembrane proton transport through a Vo proton channel subcomplex. Despite recent high-resolution structures of several rotary ATPases, the dynamic mechanism of proton pumping remains elusive. Here, we determined a 2.7-Å cryo-electron microscopy (cryo-EM) structure of yeast Vo proton channel in nanodisc that reveals the location of ordered water molecules along the proton path, details of specific protein-lipid interactions, and the architecture of the membrane scaffold protein. Moreover, we uncover a state of Vo that shows the c-ring rotated by ~14°. Molecular dynamics simulations demonstrate that the two rotary states are in thermal equilibrium and depict how the protonation state of essential glutamic acid residues couples water-mediated proton transfer with c-ring rotation. Our cryo-EM models and simulations also rationalize a mechanism for inhibition of passive proton transport as observed for free Vo that is generated as a result of V-ATPase regulation by reversible disassembly in vivo.

15.
J Biol Chem ; 294(16): 6439-6449, 2019 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-30792311

RESUMO

The vacuolar H+-ATPase (V-ATPase; V1Vo-ATPase) is an ATP-dependent proton pump that acidifies subcellular compartments in all eukaryotic organisms. V-ATPase activity is regulated by reversible disassembly into autoinhibited V1-ATPase and Vo proton channel subcomplexes, a process that is poorly understood on the molecular level. V-ATPase is a rotary motor, and recent structural analyses have revealed different rotary states for disassembled V1 and Vo, a mismatch that is likely responsible for their inability to reconstitute into holo V-ATPase in vitro Here, using the model organism Saccharomyces cerevisiae, we show that a key impediment for binding of V1 to Vo is the conformation of the inhibitory C-terminal domain of subunit H (HCT). Using biolayer interferometry and biochemical analyses of purified mutant V1-ATPase and Vo proton channel reconstituted into vacuolar lipid-containing nanodiscs, we further demonstrate that disruption of HCT's V1-binding site facilitates assembly of a functionally coupled and stable V1Vo-ATPase. Unlike WT, this mutant enzyme was resistant to MgATP hydrolysis-induced dissociation, further highlighting HCT's role in the mechanism of V-ATPase regulation. Our findings provide key insight into the molecular events underlying regulation of V-ATPase activity by reversible disassembly.


Assuntos
Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/enzimologia , ATPases Vacuolares Próton-Translocadoras/química , Mutação , Domínios Proteicos , Estrutura Quaternária de Proteína , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , ATPases Vacuolares Próton-Translocadoras/genética , ATPases Vacuolares Próton-Translocadoras/metabolismo
16.
J Biol Chem ; 293(27): 10718-10730, 2018 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-29754144

RESUMO

Vacuolar H+-ATPases (V-ATPases; V1Vo-ATPases) are rotary-motor proton pumps that acidify intracellular compartments and, in some tissues, the extracellular space. V-ATPase is regulated by reversible disassembly into autoinhibited V1-ATPase and Vo proton channel sectors. An important player in V-ATPase regulation is subunit H, which binds at the interface of V1 and Vo H is required for MgATPase activity in holo-V-ATPase but also for stabilizing the MgADP-inhibited state in membrane-detached V1 However, how H fulfills these two functions is poorly understood. To characterize the H-V1 interaction and its role in reversible disassembly, we determined binding affinities of full-length H and its N-terminal domain (HNT) for an isolated heterodimer of subunits E and G (EG), the N-terminal domain of subunit a (aNT), and V1 lacking subunit H (V1ΔH). Using isothermal titration calorimetry (ITC) and biolayer interferometry (BLI), we show that HNT binds EG with moderate affinity, that full-length H binds aNT weakly, and that both H and HNT bind V1ΔH with high affinity. We also found that only one molecule of HNT binds V1ΔH with high affinity, suggesting conformational asymmetry of the three EG heterodimers in V1ΔH. Moreover, MgATP hydrolysis-driven conformational changes in V1 destabilized the interaction of H or HNT with V1ΔH, suggesting an interplay between MgADP inhibition and subunit H. Our observation that H binding is affected by MgATP hydrolysis in V1 points to H's role in the mechanism of reversible disassembly.


Assuntos
Trifosfato de Adenosina/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , ATPases Vacuolares Próton-Translocadoras/química , ATPases Vacuolares Próton-Translocadoras/metabolismo , Cristalografia por Raios X , Hidrólise , Modelos Moleculares , Conformação Proteica , Subunidades Proteicas
17.
Mol Cell ; 69(6): 993-1004.e3, 2018 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-29526695

RESUMO

The molecular mechanism of transmembrane proton translocation in rotary motor ATPases is not fully understood. Here, we report the 3.5-Å resolution cryoEM structure of the lipid nanodisc-reconstituted Vo proton channel of the yeast vacuolar H+-ATPase, captured in a physiologically relevant, autoinhibited state. The resulting atomic model provides structural detail for the amino acids that constitute the proton pathway at the interface of the proteolipid ring and subunit a. Based on the structure and previous mutagenesis studies, we propose the chemical basis of transmembrane proton transport. Moreover, we discovered that the C terminus of the assembly factor Voa1 is an integral component of mature Vo. Voa1's C-terminal transmembrane α helix is bound inside the proteolipid ring, where it contributes to the stability of the complex. Our structure rationalizes possible mechanisms by which mutations in human Vo can result in disease phenotypes and may thus provide new avenues for therapeutic interventions.


Assuntos
Microscopia Crioeletrônica , Nanopartículas , Proteínas de Saccharomyces cerevisiae/ultraestrutura , Saccharomyces cerevisiae/enzimologia , ATPases Vacuolares Próton-Translocadoras/ultraestrutura , Genótipo , Humanos , Lipídeos de Membrana/química , Modelos Moleculares , Mutação , Fenótipo , Conformação Proteica em alfa-Hélice , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Subunidades Proteicas , Prótons , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Relação Estrutura-Atividade , ATPases Vacuolares Próton-Translocadoras/genética , ATPases Vacuolares Próton-Translocadoras/metabolismo
18.
Protein Sci ; 26(5): 896-909, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28247968

RESUMO

The vacuolar ATPase (V-ATPase; V1 Vo -ATPase) is a large multisubunit proton pump found in the endomembrane system of all eukaryotic cells where it acidifies the lumen of subcellular organelles including lysosomes, endosomes, the Golgi apparatus, and clathrin-coated vesicles. V-ATPase function is essential for pH and ion homeostasis, protein trafficking, endocytosis, mechanistic target of rapamycin (mTOR), and Notch signaling, as well as hormone secretion and neurotransmitter release. V-ATPase can also be found in the plasma membrane of polarized animal cells where its proton pumping function is involved in bone remodeling, urine acidification, and sperm maturation. Aberrant (hypo or hyper) activity has been associated with numerous human diseases and the V-ATPase has therefore been recognized as a potential drug target. Recent progress with moderate to high-resolution structure determination by cryo electron microscopy and X-ray crystallography together with sophisticated single-molecule and biochemical experiments have provided a detailed picture of the structure and unique mode of regulation of the V-ATPase. This review summarizes the recent advances, focusing on the structural and biophysical aspects of the field.


Assuntos
ATPases Vacuolares Próton-Translocadoras/química , ATPases Vacuolares Próton-Translocadoras/metabolismo , ATPases Vacuolares Próton-Translocadoras/ultraestrutura , Animais , Remodelação Óssea/fisiologia , Membrana Celular/química , Membrana Celular/metabolismo , Membrana Celular/ultraestrutura , Microscopia Crioeletrônica , Cristalografia por Raios X , Endocitose/fisiologia , Homeostase/fisiologia , Humanos , Concentração de Íons de Hidrogênio , Transporte Proteico/fisiologia , Serina-Treonina Quinases TOR/química , Serina-Treonina Quinases TOR/metabolismo
19.
Protein Sci ; 26(5): 1070-1079, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28241399

RESUMO

Vacuolar H+ -ATPase (V-ATPase) is a large, multisubunit membrane protein complex responsible for the acidification of subcellular compartments and the extracellular space. V-ATPase activity is regulated by reversible disassembly, resulting in cytosolic V1 -ATPase and membrane-integral V0 proton channel sectors. Reversible disassembly is accompanied by transient interaction with cellular factors and assembly chaperones. Quantifying protein-protein interactions involving membrane proteins, however, is challenging. Here we present a novel method to determine kinetic constants of membrane protein-protein interactions using biolayer interferometry (BLI). Yeast vacuoles are solubilized, vacuolar proteins are reconstituted into lipid nanodiscs with native vacuolar lipids and biotinylated membrane scaffold protein (MSP) followed by affinity purification of nanodisc-reconstituted V-ATPase (V1 V0 ND). We show that V1 V0 ND can be immobilized on streptavidin-coated BLI sensors to quantitate binding of a pathogen derived inhibitor and to measure the kinetics of nucleotide dependent enzyme dissociation.


Assuntos
Bicamadas Lipídicas/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/enzimologia , ATPases Vacuolares Próton-Translocadoras/química , Interferometria
20.
J Biol Chem ; 292(5): 1749-1761, 2017 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-27965356

RESUMO

Eukaryotic vacuolar H+-ATPase (V-ATPase) is a multisubunit enzyme complex that acidifies subcellular organelles and the extracellular space. V-ATPase consists of soluble V1-ATPase and membrane-integral Vo proton channel sectors. To investigate the mechanism of V-ATPase regulation by reversible disassembly, we recently determined a cryo-EM reconstruction of yeast Vo The structure indicated that, when V1 is released from Vo, the N-terminal cytoplasmic domain of subunit a (aNT) changes conformation to bind rotor subunit d However, insufficient resolution precluded a precise definition of the aNT-d interface. Here we reconstituted Vo into lipid nanodiscs for single-particle EM. 3D reconstructions calculated at ∼15-Šresolution revealed two sites of contact between aNT and d that are mediated by highly conserved charged residues. Alanine mutagenesis of some of these residues disrupted the aNT-d interaction, as shown by isothermal titration calorimetry and gel filtration of recombinant subunits. A recent cryo-EM study of holo V-ATPase revealed three major conformations corresponding to three rotational states of the central rotor of the enzyme. Comparison of the three V-ATPase conformations with the structure of nanodisc-bound Vo revealed that Vo is halted in rotational state 3. Combined with our prior work that showed autoinhibited V1-ATPase to be arrested in state 2, we propose a model in which the conformational mismatch between free V1 and Vo functions to prevent unintended reassembly of holo V-ATPase when activity is not needed.


Assuntos
Lipídeos de Membrana/química , Nanoestruturas/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/enzimologia , ATPases Vacuolares Próton-Translocadoras/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...