Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Infect Dis ; 229(4): 1147-1157, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38035792

RESUMO

BACKGROUND: Immune dysregulation in people with human immunodeficiency virus-1 (PWH) persists despite potent antiretroviral therapy and, consequently, PWH tend to have lower immune responses to licensed vaccines. However, limited information is available about the impact of mRNA vaccines in PWH. This study details the immunologic responses to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) mRNA vaccines in PWH and their impact on HIV-1. METHODS: We quantified anti-S immunoglobulin G (IgG) binding and neutralization of 3 SARS-CoV-2 variants of concern and complement activation in blood from virally suppressed men with HIV-1 (MWH) and men without HIV-1 (MWOH), and the characteristics that may impact the vaccine immune responses. We also studied antibody levels against HIV-1 proteins and HIV-1 plasma RNA. RESULTS: MWH had lower anti-S IgG binding and neutralizing antibodies against the 3 variants compared to MWOH. MWH also produced anti-S1 antibodies with a 10-fold greater ability to activate complement and exhibited higher C3a blood levels than MWOH. MWH had decreased residual HIV-1 plasma viremia and anti-Nef IgG approximately 100 days after immunization. CONCLUSIONS: MWH respond to SARS-CoV-2 mRNA vaccines with lower antibody titers and with greater activation of complement, while exhibiting a decrease in HIV-1 viremia and anti-Nef antibodies. These results suggest an important role of complement activation mediating protection in MWH.


Assuntos
COVID-19 , Soropositividade para HIV , HIV-1 , Masculino , Humanos , Vacinas contra COVID-19 , Viremia , SARS-CoV-2 , Vacinas de mRNA , COVID-19/prevenção & controle , Ativação do Complemento , Anticorpos Neutralizantes , Imunoglobulina G , Anticorpos Antivirais
2.
PLoS One ; 18(6): e0287103, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37310982

RESUMO

Maternal COVID-19 vaccination could protect infants who are ineligible for vaccine through antibody transfer during pregnancy and lactation. We measured the quantity and durability of SARS-CoV-2 antibodies in human milk and infant blood before and after maternal booster vaccination. Prospective cohort of lactating women immunized with primary and booster COVID-19 vaccines during pregnancy or lactation and their infants. Milk and blood samples from October 2021 to April 2022 were included. Anti-nucleoprotein (NP) and anti-receptor binding domain (RBD) IgG and IgA in maternal milk and maternal and infant blood were measured and compared longitudinally after maternal booster vaccine. Forty-five lactating women and their infants provided samples. 58% of women were anti-NP negative and 42% were positive on their first blood sample prior to booster vaccine. Anti-RBD IgG and IgA in milk remained significantly increased through 120-170 days after booster vaccine and did not differ by maternal NP status. Anti-RBD IgG and IgA did not increase in infant blood after maternal booster. Of infants born to women vaccinated in pregnancy, 74% still had positive serum anti-RBD IgG measured on average 5 months after delivery. Infant to maternal IgG ratio was highest for infants exposed to maternal primary vaccine during the second trimester compared to third trimester (0.85 versus 0.29; p<0.001). Maternal COVID-19 primary and booster vaccine resulted in robust and long-lasting transplacental and milk antibodies. These antibodies may provide important protection against SARS-CoV-2 during the first six months of life.


Assuntos
COVID-19 , Leite Humano , Lactente , Gravidez , Feminino , Humanos , Vacinas contra COVID-19 , SARS-CoV-2 , Lactação , Estudos Prospectivos , COVID-19/prevenção & controle , Vacinação , Anticorpos Antivirais , Imunoglobulina A , Imunoglobulina G
3.
Kidney Int Rep ; 5(4): 519-529, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32274456

RESUMO

INTRODUCTION: Focal segmental glomerulosclerosis (FSGS) is a histopathologically defined kidney lesion. FSGS can be observed with various underlying causes, including highly penetrant monogenic renal disease. We recently identified pathogenic variants of UMOD, a gene encoding the tubular protein uromodulin, in 8 families with suspected glomerular disease. METHODS: To validate pathogenic variants of UMOD, we reviewed the clinical and pathology reports of members of 8 families identified to have variants of UMOD. Clinical, laboratory, and pathologic data were collected, and genetic confirmation for UMOD was performed by Sanger sequencing. RESULTS: Biopsy-proven cases of FSGS were verified in 21% (7 of 34) of patients with UMOD variants. The UMOD variants seen in 7 families were mutations previously reported in autosomal dominant tubulointerstitial kidney disease-uromodulin (ADTKD-UMOD). For one family with 3 generations affected, we identified p.R79G in a noncanonical transcript variant of UMOD co-segregating with disease. Consistent with ADTKD, most patients in our study presented with autosomal dominant inheritance, subnephrotic range proteinuria, minimal hematuria, and renal impairment. Kidney biopsies showed histologic features of glomerular injury consistent with secondary FSGS, including focal sclerosis and partial podocyte foot process effacement. CONCLUSION: Our study demonstrates that with the use of standard clinical testing and kidney biopsy, clinicians were unable to make the diagnosis of ADTKD-UMOD; patients were often labeled with a clinical diagnosis of FSGS. We show that genetic testing can establish the diagnosis of ADTKD-UMOD with secondary FSGS. Genetic testing in individuals with FSGS histology should not be limited to genes that directly impair podocyte function.

4.
J Am Soc Nephrol ; 30(9): 1625-1640, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31308072

RESUMO

BACKGROUND: Over the past two decades, the importance of genetic factors in the development of FSGS has become increasingly clear. However, despite many known monogenic causes of FSGS, single gene defects explain only 30% of cases. METHODS: To investigate mutations underlying FSGS, we sequenced 662 whole exomes from individuals with sporadic or familial FSGS. After quality control, we analyzed the exome data from 363 unrelated family units with sporadic or familial FSGS and compared this to data from 363 ancestry-matched controls. We used rare variant burden tests to evaluate known disease-associated genes and potential new genes. RESULTS: We validated several FSGS-associated genes that show a marked enrichment of deleterious rare variants among the cases. However, for some genes previously reported as FSGS related, we identified rare variants at similar or higher frequencies in controls. After excluding such genes, 122 of 363 cases (33.6%) had rare variants in known disease-associated genes, but 30 of 363 controls (8.3%) also harbored rare variants that would be classified as "causal" if detected in cases; applying American College of Medical Genetics filtering guidelines (to reduce the rate of false-positive claims that a variant is disease related) yielded rates of 24.2% in cases and 5.5% in controls. Highly ranked new genes include SCAF1, SETD2, and LY9. Network analysis showed that top-ranked new genes were located closer than a random set of genes to known FSGS genes. CONCLUSIONS: Although our analysis validated many known FSGS-causing genes, we detected a nontrivial number of purported "disease-causing" variants in controls, implying that filtering is inadequate to allow clinical diagnosis and decision making. Genetic diagnosis in patients with FSGS is complicated by the nontrivial rate of variants in known FSGS genes among people without kidney disease.


Assuntos
Glomerulosclerose Segmentar e Focal/genética , Adolescente , Adulto , Idade de Início , Apolipoproteína L1/genética , Estudos de Casos e Controles , Criança , Pré-Escolar , Análise Mutacional de DNA , Reações Falso-Positivas , Feminino , Estudos de Associação Genética , Glomerulosclerose Segmentar e Focal/etnologia , Humanos , Masculino , Mutação , Sequenciamento do Exoma , Adulto Jovem
5.
Proc Natl Acad Sci U S A ; 116(9): 3712-3721, 2019 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-30733285

RESUMO

Two coding variants in the apolipoprotein L1 (APOL1) gene (termed G1 and G2) are strongly associated with increased risk of nondiabetic kidney disease in people of recent African ancestry. The mechanisms by which the risk variants cause kidney damage, although not well-understood, are believed to involve injury to glomerular podocytes. The intracellular localization and function of APOL1 in podocytes remain unclear, with recent studies suggesting possible roles in the endoplasmic reticulum (ER), mitochondria, endosomes, lysosomes, and autophagosomes. Here, we demonstrate that APOL1 also localizes to intracellular lipid droplets (LDs). While a large fraction of risk variant APOL1 (G1 and G2) localizes to the ER, a significant proportion of wild-type APOL1 (G0) localizes to LDs. APOL1 transiently interacts with numerous organelles, including the ER, mitochondria, and endosomes. Treatment of cells that promote LD formation with oleic acid shifted the localization of G1 and G2 from the ER to LDs, with accompanying reduction of autophagic flux and cytotoxicity. Coexpression of G0 APOL1 with risk variant APOL1 enabled recruitment of G1 and G2 from the ER to LDs, accompanied by reduced cell death. The ability of G0 APOL1 to recruit risk variant APOL1 to LDs may help explain the recessive pattern of kidney disease inheritance. These studies establish APOL1 as a bona fide LD-associated protein, and reveal that recruitment of risk variant APOL1 to LDs reduces cell toxicity, autophagic flux, and cell death. Thus, interventions that divert APOL1 risk variants to LDs may serve as a novel therapeutic strategy to alleviate their cytotoxic effects.


Assuntos
Apolipoproteína L1/genética , Autofagia/genética , Nefropatias/genética , Gotículas Lipídicas/metabolismo , População Negra/genética , Retículo Endoplasmático/genética , Endossomos/genética , Variação Genética , Células HEK293 , Humanos , Rim/lesões , Rim/patologia , Nefropatias/fisiopatologia , Gotículas Lipídicas/patologia , Lisossomos/genética , Podócitos/metabolismo , Podócitos/patologia , Fatores de Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...