Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 13: 953053, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36105811

RESUMO

Despite significant increases in human lifespan over the last century, adoption of high calorie diets (HCD) has driven global increases in type-2 diabetes, obesity and cardiovascular disease, disorders precluding corresponding improvements in healthspan. Reflecting that such conditions are associated with chronic systemic inflammation, evidence is emerging that infection with parasitic helminths might protect against obesity-accelerated ageing, by virtue of their evolution of survival-promoting anti-inflammatory molecules. Indeed, ES-62, an anti-inflammatory secreted product of the filarial nematode Acanthocheilonema viteae, improves the healthspan of both male and female C57BL/6J mice undergoing obesity-accelerated ageing and also extends median lifespan in male animals, by positively impacting on inflammatory, adipose metabolic and gut microbiome parameters of ageing. We therefore explored whether ES-62 affects the osteoimmunology axis that integrates environmental signals, such as diet and the gut microbiome to homeostatically regulate haematopoiesis and training of immune responses, which become dysregulated during (obesity-accelerated) ageing. Of note, we find sexual dimorphisms in the decline in bone health, and associated dysregulation of haematopoiesis and consequent peripheral immune responses, during obesity-accelerated ageing, highlighting the importance of developing sex-specific anti-ageing strategies. Related to this, ES-62 protects trabecular bone structure, maintaining bone marrow (BM) niches that counter the ageing-associated decline in haematopoietic stem cell (HSC) functionality highlighted by a bias towards myeloid lineages, in male but not female, HCD-fed mice. This is evidenced by the ability of ES-62 to suppress the adipocyte and megakaryocyte bias and correspondingly promote increases in B lymphocytes in the BM. Furthermore, the consequent prevention of ageing-associated myeloid/lymphoid skewing is associated with reduced accumulation of inflammatory CD11c+ macrophages and IL-1ß in adipose tissue, disrupting the perpetuation of inflammation-driven dysregulation of haematopoiesis during obesity-accelerated ageing in male HCD-fed mice. Finally, we report the ability of small drug-like molecule analogues of ES-62 to mimic some of its key actions, particularly in strongly protecting trabecular bone structure, highlighting the translational potential of these studies.


Assuntos
Proteínas de Helminto , Helmintos , Envelhecimento , Animais , Anti-Inflamatórios , Modelos Animais de Doenças , Feminino , Helmintos/metabolismo , Humanos , Inflamação , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Obesidade
2.
J Bone Miner Res ; 26(8): 1926-38, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21472776

RESUMO

Familial expansile osteolysis and related disorders are caused by heterozygous tandem duplication mutations in the signal peptide region of the gene encoding receptor activator of NF-κB (RANK), a receptor critical for osteoclast formation and function. Previous studies have shown that overexpression of these mutant proteins causes constitutive activation of NF-κB signaling in vitro, and it has been assumed that this accounts for the focal osteolytic lesions that are seen in vivo. We show here that constitutive activation of NF-κB occurred in HEK293 cells overexpressing wild-type or mutant RANK but not in stably transfected cell lines expressing low levels of each RANK gene. Importantly, only cells expressing wild-type RANK demonstrated ligand-dependent activation of NF-κB. When overexpressed, mutant RANK did not localize to the plasma membrane but localized to extensive areas of organized smooth endoplasmic reticulum, whereas, as expected, wild-type RANK was detected at the plasma membrane and in the Golgi apparatus. This intracellular accumulation of the mutant proteins is probably the result of lack of signal peptide cleavage because, using two in vitro translation systems, we demonstrate that the mutations in RANK prevent cleavage of the signal peptide. In conclusion, signal peptide mutations lead to accumulation of RANK in the endoplasmic reticulum and prevent direct activation by RANK ligand. These results strongly suggest that the increased osteoclast formation/activity caused by these mutations cannot be explained by studying the homozygous phenotype alone but requires further detailed investigation of the heterozygous expression of the mutant RANK proteins.


Assuntos
Mutação/genética , NF-kappa B/metabolismo , Sinais Direcionadores de Proteínas/genética , Receptor Ativador de Fator Nuclear kappa-B/genética , Sequência de Bases , Linhagem Celular , DNA Nucleotidiltransferases/metabolismo , Regulação da Expressão Gênica , Células HEK293 , Humanos , Dados de Sequência Molecular , Peso Molecular , Proteínas Mutantes/metabolismo , Proteínas Mutantes/ultraestrutura , Osteoclastos/metabolismo , Osteoclastos/ultraestrutura , Transporte Proteico , Receptor Ativador de Fator Nuclear kappa-B/metabolismo , Receptor Ativador de Fator Nuclear kappa-B/ultraestrutura , Reprodutibilidade dos Testes , Frações Subcelulares/metabolismo , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...