Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 102
Filtrar
1.
Diabetes Care ; 46(4): 777-785, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36749934

RESUMO

OBJECTIVE: Despite increasing evidence demonstrating structural and functional alterations within the central nervous system in diabetic peripheral neuropathy (DPN), the neuroanatomical correlates of painful and painless DPN have yet to be identified. Focusing on structural MRI, the aims of this study were to 1) define the brain morphological alterations in painful and painless DPN and 2) explore the relationships between brain morphology and clinical/neurophysiological assessments. RESEARCH DESIGN AND METHODS: A total of 277 participants with type 1 and 2 diabetes (no DPN [n = 57], painless DPN [n = 77], painful DPN [n = 77]) and 66 healthy volunteers (HVs) were enrolled. All underwent detailed clinical/neurophysiological assessment and brain 3T MRI. Participants with painful DPN were subdivided into the irritable (IR) nociceptor and nonirritable (NIR) nociceptor phenotypes using the German Research Network on Neuropathic Pain protocol. Cortical reconstruction and volumetric segmentation were performed with FreeSurfer software and voxel-based morphometry implemented in FSL. RESULTS: Both participants with painful and painless DPN showed a significant reduction in primary somatosensory and motor cortical thickness compared with HVs (P = 0.02; F[3,275] = 3.36) and participants with no DPN (P = 0.01; F[3,275] = 3.80). Somatomotor cortical thickness correlated with neurophysiological measures of DPN severity. There was also a reduction in ventrobasal thalamic nuclei volume in both painless and painful DPN. Participants with painful DPN with the NIR nociceptor phenotype had reduced primary somatosensory cortical, posterior cingulate cortical, and thalamic volume compared with the IR nociceptor phenotype. CONCLUSIONS: In this largest neuroimaging study in DPN to date, we demonstrated significant structural alterations in key somatomotor/nociceptive brain regions specific to painless DPN and painful DPN, including the IR and NIR nociceptor phenotypes.


Assuntos
Diabetes Mellitus Tipo 1 , Diabetes Mellitus Tipo 2 , Neuropatias Diabéticas , Humanos , Neuropatias Diabéticas/diagnóstico por imagem , Nociceptividade , Diabetes Mellitus Tipo 2/complicações , Encéfalo
2.
Psychol Med ; 53(7): 3178-3186, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-35125130

RESUMO

BACKGROUND: Schizophrenia endophenotypes may help elucidate functional effects of genetic risk variants in multiply affected consanguineous families that segregate recessive risk alleles of large effect size. We studied the association between a schizophrenia risk locus involving a 6.1Mb homozygous region on chromosome 13q22-31 in a consanguineous multiplex family and cognitive functioning, haemodynamic response and white matter integrity using neuroimaging. METHODS: We performed CANTAB neuropsychological testing on four affected family members (all homozygous for the risk locus), ten unaffected family members (seven homozygous and three heterozygous) and ten healthy volunteers, and tested neuronal responses on fMRI during an n-back working memory task, and white matter integrity on diffusion tensor imaging (DTI) on four affected and six unaffected family members (four homozygous and two heterozygous) and three healthy volunteers. For cognitive comparisons we used a linear mixed model (Kruskal-Wallis) test, followed by posthoc Dunn's pairwise tests with a Bonferroni adjustment. For fMRI analysis, we counted voxels exceeding the p < 0.05 corrected threshold. DTI analysis was observational. RESULTS: Family members with schizophrenia and unaffected family members homozygous for the risk haplotype showed attention (p < 0.01) and working memory deficits (p < 0.01) compared with healthy controls; a neural activation laterality bias towards the right prefrontal cortex (voxels reaching p < 0.05, corrected) and observed lower fractional anisotropy in the anterior cingulate cortex and left dorsolateral prefrontal cortex. CONCLUSIONS: In this family, homozygosity at the 13q risk locus was associated with impaired cognition, white matter integrity, and altered laterality of neural activation.

3.
J Magn Reson Imaging ; 55(2): 435-442, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34322948

RESUMO

BACKGROUND: Glutathione (GSH) is an important brain antioxidant and a number of studies have reported its measurement by edited and nonedited localized 1 H spectroscopy techniques within a range of applications in healthy volunteers and disease states. Good test-retest reproducibility is key when assessing the efficacy of treatments aimed at modulating GSH levels within the central nervous system or when noninvasively assessing changes in GSH content over time. PURPOSE: To evaluate the intraday (in vitro and in vivo) and 1-month apart (in vivo) test-retest reproducibility of GSH measurements from GSH-edited MEGA-PRESS acquisitions at 3 T in a phantom and in the brain of a cohort of middle-aged and older healthy volunteers. STUDY TYPE: Prospective. SUBJECTS/PHANTOMS: A phantom containing physiological concentrations of GSH and metabolites with overlapping spectral signatures and 10 healthy volunteers (4 F, 6 M, 55 ± 14 years old). FIELD STRENGTH/SEQUENCE: GSH-edited spectra were acquired at 3 T using the MEGA-PRESS sequence. ASSESSMENT: The phantom was scanned twice and the healthy subjects were scanned three times (on two separate days, 1 month apart). GSH was quantified from each acquisition, with the in vivo voxels placed at the primary motor cortex (PMC) and the occipital cortex (OCC). STATISTICAL TESTS: Mean coefficients of variation (CV) were used to assess short-term (in vitro and in vivo) and longer-term (in vivo) test-retest reproducibility. RESULTS: In vitro, the CV was 2.3%. In vivo, the mean intraday CV was 3.3% in the PMC and 2.4% in the OCC, while the CVs at 1 month apart were 4.6% in the PMC and 7.8% in the OCC. DATA CONCLUSION: GSH-edited MEGA-PRESS spectroscopy allows measurement of GSH with excellent precision. EVIDENCE LEVEL: 1 TECHNICAL EFFICACY: Stage 2.


Assuntos
Córtex Motor , Adulto , Idoso , Encéfalo , Glutationa , Humanos , Pessoa de Meia-Idade , Lobo Occipital/diagnóstico por imagem , Estudos Prospectivos , Reprodutibilidade dos Testes
4.
Front Pain Res (Lausanne) ; 3: 1086887, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36688084

RESUMO

Introduction: In this study, we used proton Magnetic Resonance Spectroscopy (1H-MRS) to determine the neuronal function in the thalamus and primary somatosensory (S1) cortex in different subgroups of DPN, including subclinical- and painful-DPN. Method: One-hundred and ten people with type 1 diabetes [20 without DPN (no-DPN); 30 with subclinical-DPN; 30 with painful-DPN; and 30 with painless-DPN] and 20 healthy volunteers, all of whom were right-handed men, were recruited and underwent detailed clinical and neurophysiological assessments. Participants underwent Magnetic Resonance Imaging at 1.5 Tesla with two 1H-MRS spectra obtained from 8 ml cubic volume voxels: one placed within left thalamus to encompass the ventro-posterior lateral sub-nucleus and another within the S1 cortex. Results: In the thalamus, participants with painless-DPN had a significantly lower NAA:Cr ratio [1.55 + 0.22 (mean ± SD)] compared to all other groups [HV (1.80 ± 0.23), no-DPN (1.85 ± 0.20), sub-clinical DPN (1.79 ± 0.23), painful-DPN (1.75 ± 0.19), ANOVA p < 0.001]. There were no significant group differences in S1 cortical neurometabolites. Conclusion: In this largest cerebral MRS study in DPN, thalamic neuronal dysfunction was found in advanced painless-DPN with preservation of function in subclinical- and painful-DPN. Furthermore, there was a preservation of neuronal function within the S1 cortex in all subgroups of DPN. Therefore, there may be a proximo-distal gradient to central nervous system alterations in painless-DPN, with thalamic neuronal dysfunction occurring only in established DPN. Moreover, these results further highlight the manifestation of cerebral alterations between painful- and painless-DPN whereby preservation of thalamic function may be a prerequisite for neuropathic pain in DPN.

5.
Diabetologia ; 64(6): 1412-1421, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33768284

RESUMO

AIMS/HYPOTHESIS: The aim of this work was to investigate whether different clinical pain phenotypes of diabetic polyneuropathy (DPN) are distinguished by functional connectivity at rest. METHODS: This was an observational, cohort study of 43 individuals with painful DPN, divided into irritable (IR, n = 10) and non-irritable (NIR, n = 33) nociceptor phenotypes using the German Research Network of Neuropathic Pain quantitative sensory testing protocol. In-situ brain MRI included 3D T1-weighted anatomical and 6 min resting-state functional MRI scans. Subgroup differences in resting-state functional connectivity in brain regions involved with somatic (thalamus, primary somatosensory cortex, motor cortex) and non-somatic (insular and anterior cingulate cortices) pain processing were examined. Multidimensional reduction of MRI datasets was performed using a machine-learning approach to classify individuals into each clinical pain phenotype. RESULTS: Individuals with the IR nociceptor phenotype had significantly greater thalamic-insular cortex (p false discovery rate [FDR] = 0.03) and reduced thalamus-somatosensory cortex functional connectivity (p-FDR = 0.03). We observed a double dissociation such that self-reported neuropathic pain score was more associated with greater thalamus-insular cortex functional connectivity (r = 0.41; p = 0.01) whereas more severe nerve function deficits were more related to lower thalamus-somatosensory cortex functional connectivity (r = -0.35; p = 0.03). Machine-learning group classification performance to identify individuals with the NIR nociceptor phenotype achieved an accuracy of 0.92 (95% CI 0.08) and sensitivity of 90%. CONCLUSIONS/INTERPRETATION: This study demonstrates differences in functional connectivity in nociceptive processing brain regions between IR and NIR phenotypes in painful DPN. We also establish proof of concept for the utility of multimodal MRI as a biomarker for painful DPN by using a machine-learning approach to classify individuals into sensory phenotypes.


Assuntos
Neuropatias Diabéticas/diagnóstico por imagem , Rede Nervosa/diagnóstico por imagem , Dor/diagnóstico por imagem , Córtex Somatossensorial/diagnóstico por imagem , Adulto , Idoso , Feminino , Humanos , Aprendizado de Máquina , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Neuroimagem , Fenótipo
6.
J Alzheimers Dis Rep ; 5(1): 65-77, 2021 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-33681718

RESUMO

BACKGROUND: How the relationship between obesity and MRI-defined neural properties varies across distinct stages of cognitive impairment due to Alzheimer's disease is unclear. OBJECTIVE: We used multimodal neuroimaging to clarify this relationship. METHODS: Scans were acquired from 47 patients clinically diagnosed with mild Alzheimer's disease dementia, 68 patients with mild cognitive impairment, and 57 cognitively healthy individuals. Voxel-wise associations were run between maps of gray matter volume, white matter integrity, and cerebral blood flow, and global/visceral obesity. RESULTS: Negative associations were found in cognitively healthy individuals between obesity and white matter integrity and cerebral blood flow of temporo-parietal regions. In mild cognitive impairment, negative associations emerged in frontal, temporal, and brainstem regions. In mild dementia, a positive association was found between obesity and gray matter volume around the right temporoparietal junction. CONCLUSION: Obesity might contribute toward neural tissue vulnerability in cognitively healthy individuals and mild cognitive impairment, while a healthy weight in mild Alzheimer's disease dementia could help preserve brain structure in the presence of age and disease-related weight loss.

7.
J Neurol Sci ; 422: 117326, 2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33556867

RESUMO

BACKGROUND: A common symptom of myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is post-exertional malaise (PEM). Various brain abnormalities have been observed in patients with ME/CFS, especially in insular and limbic areas, but their link with ME/CFS symptoms is still unclear. This pilot study aimed at investigating the association between PEM in ME/CFS and changes in functional connectivity (FC) of two main networks: the salience network (SN) and the default-mode network (DMN). METHODS: A total of 16 women, 6 with and 10 without ME/CFS, underwent clinical and MRI assessment before and after cognitive exertion. Resting-state FC maps of 7 seeds (3 for the SN and 4 for the DMN) and clinical measures of fatigue, pain and cognition were analysed with repeated-measure models. FC-symptom change associations were also investigated. RESULTS: Exertion induced increases in fatigue and pain in patients with ME/CFS compared to the control group, while no changes were found in cognitive performance. At baseline, patients showed altered FC between some DMN seeds and frontal areas and stronger FC between all SN seeds and left temporal areas and the medulla. Significantly higher FC increases in patients than in controls were found only between the right insular seed and frontal and subcortical areas; these increases correlated with worsening of symptoms. CONCLUSIONS: Cognitive exertion can induce worsening of ME/CFS-related symptoms. These changes were here associated with strengthening of FC of the right insula with areas involved in reward processing and cognitive control.


Assuntos
Síndrome de Fadiga Crônica , Cognição , Síndrome de Fadiga Crônica/diagnóstico por imagem , Feminino , Humanos , Imageamento por Ressonância Magnética , Esforço Físico , Projetos Piloto
8.
Front Pain Res (Lausanne) ; 2: 731658, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35295465

RESUMO

Painful diabetic peripheral neuropathy can be intractable with a major impact, yet the underlying pain mechanisms remain uncertain. A range of neuronal and vascular biomarkers was investigated in painful diabetic peripheral neuropathy (painful-DPN) and painless-DPN and used to differentiate painful-DPN from painless-DPN. Skin biopsies were collected from 61 patients with type 2 diabetes (T2D), and 19 healthy volunteers (HV). All subjects underwent detailed clinical and neurophysiological assessments. Based on the neuropathy composite score of the lower limbs [NIS(LL)] plus seven tests, the T2D subjects were subsequently divided into three groups: painful-DPN (n = 23), painless-DPN (n = 19), and No-DPN (n = 19). All subjects underwent punch skin biopsy, and immunohistochemistry used to quantify total intraepidermal nerve fibers (IENF) with protein gene product 9.5 (PGP9.5), regenerating nerve fibers with growth-associated protein 43 (GAP43), peptidergic nerve fibers with calcitonin gene-related peptide (CGRP), and blood vessels with von Willebrand Factor (vWF). The results showed that IENF density was severely decreased (p < 0.001) in both DPN groups, with no differences for PGP9.5, GAP43, CGRP, or GAP43/PGP9.5 ratios. There was a significant increase in blood vessel (vWF) density in painless-DPN and No-DPN groups compared to the HV group, but this was markedly greater in the painful-DPN group, and significantly higher than in the painless-DPN group (p < 0.0001). The ratio of sub-epidermal nerve fiber (SENF) density of CGRP:vWF showed a significant decrease in painful-DPN vs. painless-DPN (p = 0.014). In patients with T2D with advanced DPN, increased dermal vasculature and its ratio to nociceptors may differentiate painful-DPN from painless-DPN. We hypothesized that hypoxia-induced increase of blood vessels, which secrete algogenic substances including nerve growth factor (NGF), may expose their associated nociceptor fibers to a relative excess of algogens, thus leading to painful-DPN.

9.
Neural Regen Res ; 16(6): 1111-1120, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33269758

RESUMO

Cognitive impairments are commonly observed in patients with multiple sclerosis and are associated with lower levels of quality of life. No consensus has been reached on how to tackle effectively cognitive decline in this clinical population non-pharmacologically. This exploratory case-control study aims to investigate the effectiveness of a hypothesis-based cognitive training designed to target multiple domains by promoting the synchronous co-activation of different brain areas and thereby improve cognition and induce changes in functional connectivity in patients with relapsing-remitting multiple sclerosis. Forty-five patients (36 females and 9 males, mean age 44.62 ± 8.80 years) with clinically stable relapsing-remitting multiple sclerosis were assigned to either a standard cognitive training or to control groups (sham training and non-active control). The standard training included twenty sessions of computerized exercises involving various cognitive functions supported by distinct brain networks. The sham training was a modified version of the standard training that comprised the same exercises and number of sessions but with increased processing speed load. The non-active control group received no cognitive training. All patients underwent comprehensive neuropsychological and magnetic resonance imaging assessments at baseline and after 5 weeks. Cognitive and resting-state magnetic resonance imaging data were analyzed using repeated measures models. At reassessment, the standard training group showed significant cognitive improvements compared to both control groups in memory tasks not specifically targeted by the training: the Buschke Selective Reminding Test and the Semantic Fluency test. The standard training group showed reductions in functional connectivity of the salience network, in the anterior cingulate cortex, associated with improvements on the Buschke Selective Reminding Test. No changes were observed in the sham training group. These findings suggest that multi-domain training that stimulates multiple brain areas synchronously may improve cognition in people with relapsing-remitting multiple sclerosis if sufficient time to process training material is allowed. The associated reduction in functional connectivity of the salience network suggests that training-induced neuroplastic functional reorganization may be the mechanism supporting performance gains. This study was approved by the Regional Ethics Committee of Yorkshire and Humber (approval No. 12/YH/0474) on November 20, 2013.

10.
Schizophr Bull ; 47(3): 796-802, 2021 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-33159203

RESUMO

We report a consanguineous family in which schizophrenia segregates in a manner consistent with recessive inheritance of a rare, partial-penetrance susceptibility allele. From 4 marriages between 2 sets of siblings who are half first cousins, 6 offspring have diagnoses of psychotic disorder. Homozygosity mapping revealed a 6.1-Mb homozygous region on chromosome 13q22.2-31.1 shared by all affected individuals, containing 13 protein-coding genes. Microsatellite analysis confirmed homozygosity for the affected haplotype in 12 further apparently unaffected members of the family. Psychiatric reports suggested an endophenotype of milder psychiatric illness in 4 of these individuals. Exome and genome sequencing revealed no potentially pathogenic coding or structural variants within the risk haplotype. Filtering for noncoding variants with a minor allele frequency of <0.05 identified 17 variants predicted to have significant effects, the 2 most significant being within or adjacent to the SCEL gene. RNA sequencing of blood from an affected homozygote showed the upregulation of transcription from NDFIP2 and SCEL. NDFIP2 is highly expressed in brain, unlike SCEL, and is involved in determining T helper (Th) cell type 1 and Th2 phenotypes, which have previously been implicated with schizophrenia.


Assuntos
Cromossomos Humanos Par 13/genética , Consanguinidade , Genes Recessivos/genética , Predisposição Genética para Doença/genética , Transtornos Psicóticos/genética , Esquizofrenia/genética , Endofenótipos , Feminino , Loci Gênicos , Humanos , Masculino , Linhagem , Transtornos Psicóticos/fisiopatologia , Esquizofrenia/fisiopatologia
11.
PLoS One ; 15(12): e0243907, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33320890

RESUMO

One of the fundamental challenges when dealing with medical imaging datasets is class imbalance. Class imbalance happens where an instance in the class of interest is relatively low, when compared to the rest of the data. This study aims to apply oversampling strategies in an attempt to balance the classes and improve classification performance. We evaluated four different classifiers from k-nearest neighbors (k-NN), support vector machine (SVM), multilayer perceptron (MLP) and decision trees (DT) with 73 oversampling strategies. In this work, we used imbalanced learning oversampling techniques to improve classification in datasets that are distinctively sparser and clustered. This work reports the best oversampling and classifier combinations and concludes that the usage of oversampling methods always outperforms no oversampling strategies hence improving the classification results.


Assuntos
Diabetes Mellitus/diagnóstico por imagem , Neuropatias Diabéticas/diagnóstico por imagem , Aprendizado de Máquina , Imageamento por Ressonância Magnética , Algoritmos , Árvores de Decisões , Diabetes Mellitus/classificação , Diabetes Mellitus/patologia , Neuropatias Diabéticas/classificação , Neuropatias Diabéticas/patologia , Feminino , Humanos , Masculino , Neuroimagem/métodos , Máquina de Vetores de Suporte
12.
BMJ Open ; 10(8): e038911, 2020 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-32759251

RESUMO

INTRODUCTION: There are no disease-modifying treatments for Parkinson's disease (PD). We undertook the first drug screen in PD patient tissue and idntified ursodeoxycholic acid (UDCA) as a promising mitochondrial rescue agent. The aims of this trial are to determine safety and tolerability of UDCA in PD at 30 mg/kg, confirm the target engagement of UDCA, apply a novel motion sensor-based approach to quantify disease progression objectively, and estimate the mean effect size and its variance on the change in motor severity. METHODS AND ANALYSIS: This is a phase II, two-centre, double-blind, randomised, placebo-controlled trial of UDCA at a dose of 30 mg/kg in 30 participants with early PD. Treatment duration is 48 weeks, followed by an 8-week washout phase. Randomisation is 2:1, drug to placebo. Assessments are performed at baseline, week 12, 24, 36, 48 and 56. The primary outcome is safety and tolerability. Secondary outcomes will compare the change between baseline and week 48 using the following three approaches: the Movement Disorders Society Unified Parkinson's Disease Rating Scale Part 3 in the practically defined 'OFF' medication state; confirmation of target engagement, applying 31Phosphorus MR Spectroscopy to assess the levels of ATP and relevant metabolites in the brain; and objective quantification of motor impairment, using a validated, motion sensor-based approach. The primary outcome will be reported using descriptive statistics and comparisons between treatment groups. For each secondary outcome, the change from baseline will be summarised within treatment groups using summary statistics and appropriate statistical tests assessing for significant differences. All outcomes will use an intention-to-treat analysis population. ETHICS AND DISSEMINATION: This trial has been approved by the East of England - Cambridgeshire and Hertfordshire Research Ethics committee. Results will be disseminated in peer-reviewed journals, presentations at scientific meetings and to patients in a lay-summary format. TRIAL REGISTRATION NUMBER: NCT03840005.


Assuntos
Doença de Parkinson , Ácido Ursodesoxicólico , Progressão da Doença , Método Duplo-Cego , Inglaterra , Humanos , Doença de Parkinson/tratamento farmacológico , Ensaios Clínicos Controlados Aleatórios como Assunto , Resultado do Tratamento , Ácido Ursodesoxicólico/uso terapêutico
13.
Brain ; 143(12): 3603-3618, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33439988

RESUMO

Mitochondrial dysfunction is postulated to be central to amyotrophic lateral sclerosis (ALS) pathophysiology. Evidence comes primarily from disease models and conclusive data to support bioenergetic dysfunction in vivo in patients is currently lacking. This study is the first to assess mitochondrial dysfunction in brain and muscle in individuals living with ALS using 31P-magnetic resonance spectroscopy (MRS), the modality of choice to assess energy metabolism in vivo. We recruited 20 patients and 10 healthy age and gender-matched control subjects in this cross-sectional clinico-radiological study. 31P-MRS was acquired from cerebral motor regions and from tibialis anterior during rest and exercise. Bioenergetic parameter estimates were derived including: ATP, phosphocreatine, inorganic phosphate, adenosine diphosphate, Gibbs free energy of ATP hydrolysis (ΔGATP), phosphomonoesters, phosphodiesters, pH, free magnesium concentration, and muscle dynamic recovery constants. Linear regression was used to test for associations between brain data and clinical parameters (revised amyotrophic functional rating scale, slow vital capacity, and upper motor neuron score) and between muscle data and clinico-neurophysiological measures (motor unit number and size indices, force of contraction, and speed of walking). Evidence for primary dysfunction of mitochondrial oxidative phosphorylation was detected in the brainstem where ΔGATP and phosphocreatine were reduced. Alterations were also detected in skeletal muscle in patients where resting inorganic phosphate, pH, and phosphomonoesters were increased, whereas resting ΔGATP, magnesium, and dynamic phosphocreatine to inorganic phosphate recovery were decreased. Phosphocreatine in brainstem correlated with respiratory dysfunction and disability; in muscle, energy metabolites correlated with motor unit number index, muscle power, and speed of walking. This study provides in vivo evidence for bioenergetic dysfunction in ALS in brain and skeletal muscle, which appears clinically and electrophysiologically relevant. 31P-MRS represents a promising technique to assess the pathophysiology of mitochondrial function in vivo in ALS and a potential tool for future clinical trials targeting bioenergetic dysfunction.


Assuntos
Mitocôndrias/química , Doenças Mitocondriais/metabolismo , Trifosfato de Adenosina/metabolismo , Idoso , Esclerose Lateral Amiotrófica/metabolismo , Química Encefálica , Estudos Transversais , Metabolismo Energético , Feminino , Humanos , Imageamento por Ressonância Magnética , Espectroscopia de Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Neurônios Motores/metabolismo , Neurônios Motores/patologia , Contração Muscular , Força Muscular , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Fosforilação Oxidativa , Fosfocreatina/metabolismo , Caminhada
14.
J Neurol ; 267(1): 244-256, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31624953

RESUMO

BACKGROUND: Clinical phenotypic heterogeneity represents a major barrier to trials in motor neuron disease (MND) and objective surrogate outcome measures are required, especially for slowly progressive patients. We assessed responsiveness of clinical, electrophysiological and radiological muscle-based assessments to detect MND-related progression. MATERIALS AND METHODS: A prospective, longitudinal cohort study of 29 MND patients and 22 healthy controls was performed. Clinical measures, electrophysiological motor unit number index/size (MUNIX/MUSIX) and relative T2- and diffusion-weighted whole-body muscle magnetic resonance (MR) were assessed three times over 12 months. Multi-variable regression models assessed between-group differences, clinico-electrophysiological associations, and longitudinal changes. Standardized response means (SRMs) assessed sensitivity to change over 12 months. RESULTS: MND patients exhibited 18% higher whole-body mean muscle relative T2-signal than controls (95% CI 7-29%, p < 0.01), maximal in leg muscles (left tibialis anterior 71% (95% CI 33-122%, p < 0.01). Clinical and electrophysiological associations were evident. By 12 months, 16 patients had died or could not continue. In the remainder, relative T2-signal increased over 12 months by 14-29% in right tibialis anterior, right quadriceps, bilateral hamstrings and gastrocnemius/soleus (p < 0.01), independent of onset-site, and paralleled progressive weakness and electrophysiological loss of motor units. Highest clinical, electrophysiological and radiological SRMs were found for revised ALS-functional rating scale scores (1.22), tibialis anterior MUNIX (1.59), and relative T2-weighted leg muscle MR (right hamstrings: 0.98), respectively. Diffusion MR detected minimal changes. CONCLUSION: MUNIX and relative T2-weighted MR represent objective surrogate markers of progressive denervation in MND. Radiological changes were maximal in leg muscles, irrespective of clinical onset-site.


Assuntos
Progressão da Doença , Doença dos Neurônios Motores/diagnóstico , Músculo Esquelético/diagnóstico por imagem , Músculo Esquelético/fisiopatologia , Adulto , Idoso , Biomarcadores , Eletromiografia , Feminino , Humanos , Estudos Longitudinais , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Doença dos Neurônios Motores/diagnóstico por imagem , Doença dos Neurônios Motores/fisiopatologia
15.
J Neurol ; 267(1): 257-258, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31781929

RESUMO

The original version of this article unfortunately contained a mistake. The numbers in the Table 5 appear to have been reproduced wrongly as dates, rather than percentages.

16.
Curr Diab Rep ; 19(6): 32, 2019 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-31065863

RESUMO

PURPOSE OF REVIEW: The prevalence of diabetes mellitus and its chronic complications are increasing to epidemic proportions. This will unfortunately result in massive increases in diabetic distal symmetrical polyneuropathy (DPN) and its troublesome sequelae, including disabling neuropathic pain (painful-DPN), which affects around 25% of patients with diabetes. Why these patients develop neuropathic pain, while others with a similar degree of neuropathy do not, is not clearly understood. This review will look at recent advances that may shed some light on the differences between painful and painless-DPN. RECENT FINDINGS: Gender, clinical pain phenotyping, serum biomarkers, brain imaging, genetics, and skin biopsy findings have been reported to differentiate painful- from painless-DPN. Painful-DPN seems to be associated with female gender and small fiber dysfunction. Moreover, recent brain imaging studies have found neuropathic pain signatures within the central nervous system; however, whether this is the cause or effect of the pain is yet to be determined. Further research is urgently required to develop our understanding of the pathogenesis of pain in DPN in order to develop new and effective mechanistic treatments for painful-DPN.


Assuntos
Diabetes Mellitus , Neuropatias Diabéticas , Neuralgia , Encéfalo , Humanos , Prevalência , Pele
17.
Cortex ; 119: 100-110, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31091485

RESUMO

BACKGROUND: Apathy is a common and early symptom in Alzheimer's disease (AD) and is linked to poorer prognosis. Theoretical interpretations of apathy implicate alterations of connections amongst fronto-striatal and limbic regions. OBJECTIVE: To test the association between presence of apathy and patterns of brain functional connectivity in patients with clinically-established AD. METHODS: Seventy AD patients were included. Thirty-five patients experienced apathy as defined by the screening question of the Neuropsychiatric Inventory, and thirty-five did not. All patients agreed to undergo an MRI protocol inclusive of resting-state acquisitions. The hemodynamic-dependent signal was extracted bilaterally from five regions of interest: ventromedial prefrontal cortices, anterior cingulate cortices, dorsolateral prefrontal cortices, insulae and amygdalae. t tests were run to compare connectivity maps of apathetic and non-apathetic patients. Age, education, Mini Mental State Examination score, gray matter volumes and gray matter fractions served as covariates. RESULTS: At a pFWE < .05 threshold, apathetic patients had reduced connectivity between the left insula and right superior parietal cortex. Apathetic patients had also increased connectivity between the right dorsolateral prefrontal seed and the right superior parietal cortex. Patients with apathy were significantly more likely to experience other psychiatric symptoms. CONCLUSION: Our findings support a role of frontal and insular connections in coordinating value-based decisions in AD. Both down-regulation and maladaptive up-regulation mechanisms appear to be at play in these regions.


Assuntos
Doença de Alzheimer/fisiopatologia , Apatia/fisiologia , Córtex Cerebral/fisiopatologia , Vias Neurais/fisiopatologia , Encéfalo/fisiopatologia , Mapeamento Encefálico/métodos , Feminino , Humanos , Processamento de Imagem Assistida por Computador/métodos , Masculino
18.
Front Neurol ; 10: 291, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31001186

RESUMO

Motor neuron disease can be viewed as an umbrella term describing a heterogeneous group of conditions, all of which are relentlessly progressive and ultimately fatal. The average life expectancy is 2 years, but with a broad range of months to decades. Biomarker research deepens disease understanding through exploration of pathophysiological mechanisms which, in turn, highlights targets for novel therapies. It also allows differentiation of the disease population into sub-groups, which serves two general purposes: (a) provides clinicians with information to better guide their patients in terms of disease progression, and (b) guides clinical trial design so that an intervention may be shown to be effective if population variation is controlled for. Biomarkers also have the potential to provide monitoring during clinical trials to ensure target engagement. This review highlights biomarkers that have emerged from the fields of systemic measurements including biochemistry (blood, cerebrospinal fluid, and urine analysis); imaging and electrophysiology, and gives examples of how a combinatorial approach may yield the best results. We emphasize the importance of systematic sample collection and analysis, and the need to correlate biomarker findings with detailed phenotype and genotype data.

19.
Diabetes ; 68(4): 796-806, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30617218

RESUMO

Diabetic distal symmetrical peripheral polyneuropathy (DSP) results in decreased somatosensory cortical gray matter volume, indicating that the disease process may produce morphological changes in the brains of those affected. However, no study has examined whether changes in brain volume alter the functional organization of the somatosensory cortex and how this relates to the various painful DSP clinical phenotypes. In this case-controlled, multimodal brain MRI study of 44 carefully phenotyped subjects, we found significant anatomical and functional changes in the somatosensory cortex. Subjects with painful DSP insensate have the lowest somatosensory cortical thickness, with expansion of the area representing pain in the lower limb to include face and lip regions. Furthermore, there was a significant relationship between anatomical and functional changes within the somatosensory cortex and severity of the peripheral neuropathy. These data suggest a dynamic plasticity of the brain in DSP driven by the neuropathic process. It demonstrates, for the first time in our knowledge, a pathophysiological relationship between a clinically painful DSP phenotype and alterations in the somatosensory cortex.


Assuntos
Diabetes Mellitus Tipo 1/diagnóstico por imagem , Neuropatias Diabéticas/diagnóstico por imagem , Córtex Somatossensorial/diagnóstico por imagem , Adulto , Estudos de Casos e Controles , Feminino , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Pessoa de Meia-Idade , Imagem Multimodal
20.
Diabetes Res Clin Pract ; 144: 177-191, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30201394

RESUMO

The prevalence of diabetes mellitus and its chronic complications continue to increase alarmingly. Consequently, the massive expenditure on diabetic distal symmetrical polyneuropathy (DSPN) and its sequelae, will also likely rise. Up to 50% of patients with diabetes develop DSPN, and about 20% develop neuropathic pain (painful-DSPN). Painful-DSPN can cast a huge burden on sufferers' lives with increased rates of unemployment, mental health disorders and physical co-morbidities. Unfortunately, due to limited understanding of the mechanisms leading to painful-DSPN, current treatments remain inadequate. Recent studies examining the pathophysiology of painful-DSPN have identified maladaptive alterations at the level of both the peripheral and central nervous systems. Additionally, genetic studies have suggested that patients with variants of voltage gated sodium channels may be more at risk of developing neuropathic pain in the presence of a disease trigger such as diabetes. We review the recent advances in genetics, skin biopsy immunohistochemistry and neuro-imaging, which have the potential to further our understanding of the condition, and identify targets for new mechanism based therapies.


Assuntos
Neuropatias Diabéticas/complicações , Dor/diagnóstico , Dor/etiologia , Neuropatias Diabéticas/fisiopatologia , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...