Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Acta Physiol (Oxf) ; 240(5): e14114, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38391060

RESUMO

AIM: Chronic heart failure (CHF) is often linked to liver malfunction and systemic endothelial dysfunction. However, whether cardio-hepatic interactions in heart failure involve dysfunction of liver sinusoidal endothelial cells (LSECs) is not known. Here we characterize LSECs phenotype in early and end stages of chronic heart failure in a murine model. METHODS: Right ventricle (RV) function, features of congestive hepatopathy, and the phenotype of primary LSECs were characterized in Tgαq*44 mice, with cardiomyocyte-specific overexpression of the Gαq protein, at the age of 4- and 12-month representative for early and end-stage phases of CHF, respectively. RESULTS: 4- and 12-month-old Tgαq*44 mice displayed progressive impairment of RV function and alterations in hepatic blood flow velocity resulting in hepatic congestion with elevated GGT and bilirubin plasma levels and decreased albumin concentration without gross liver pathology. LSECs isolated from 4- and 12-month-old Tgαq*44 mice displayed significant loss of fenestrae with impaired functional response to cytochalasin B, significant changes in proteome related to cytoskeleton remodeling, and altered vasoprotective function. However, LSECs barrier function and bioenergetics were largely preserved. In 4- and 12-month-old Tgαq*44 mice, LSECs defenestration was associated with prolonged postprandial hypertriglyceridemia and in 12-month-old Tgαq*44 mice with proteomic changes of hepatocytes indicative of altered lipid metabolism. CONCLUSION: Tgαq*44 mice displayed right-sided HF and altered hepatic blood flow leading to LSECs dysfunction involving defenestration, shift in eicosanoid profile, and proteomic changes. LSECs dysfunction appears as an early and persistent event in CHF, preceding congestive hepatopathy and contributing to alterations in lipoprotein transport and CHF pathophysiology.

2.
Analyst ; 149(3): 778-788, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38109075

RESUMO

The manuscript presents the potential of surface-enhanced Raman spectroscopy (SERS) and tip-enhanced Raman spectroscopy (TERS) for label-free characterization of extracellular microvesicles (EVs) and their isolated membranes derived from red blood cells (RBCs) at the nanoscale and at the single-molecule level, providing detection of a few individual amino acids, protein and lipid membrane compartments. The study shows future directions for research, such as investigating the use of the mentioned techniques for the detection and diagnosis of diseases. We demonstrate that SERS and TERS are powerful techniques for identifying the biochemical composition of EVs and their membranes, allowing the detection of small molecules, lipids, and proteins. Furthermore, extracellular vesicles released from red blood cells (REVs) can be broadly classified into exosomes, microvesicles, and apoptotic bodies, based on their size and biogenesis pathways. Our study specifically focuses on microvesicles that range from 100 to 1000 nanometres in diameter, as presented in AFM images. Using SERS and TERS spectra obtained for REVs and their membranes, we were able to characterize the chemical and structural properties of microvesicle membranes with high sensitivity and specificity. This information may help better distinguish and categorize different types of EVs, leading to a better understanding of their functions and potential biomedical applications.


Assuntos
Vesículas Extracelulares , Análise Espectral Raman , Análise Espectral Raman/métodos , Membrana Eritrocítica , Nanotecnologia/métodos , Proteínas/química
3.
Anal Bioanal Chem ; 415(29-30): 7281-7295, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37906289

RESUMO

The lack of specific and sensitive early diagnostic options for pancreatic cancer (PC) results in patients being largely diagnosed with late-stage disease, thus inoperable and burdened with high mortality. Molecular spectroscopic methodologies, such as Raman or infrared spectroscopies, show promise in becoming a leader in screening for early-stage cancer diseases, including PC. However, should such technology be introduced, the identification of differentiating spectral features between various cancer types is required. This would not be possible without the precise extraction of spectra without the contamination by necrosis, inflammation, desmoplasia, or extracellular fluids such as mucous that surround tumor cells. Moreover, an efficient methodology for their interpretation has not been well defined. In this study, we compared different methods of spectral analysis to find the best for investigating the biomolecular composition of PC cells cytoplasm and nuclei separately. Sixteen PC tissue samples of main PC subtypes (ductal adenocarcinoma, intraductal papillary mucinous carcinoma, and ampulla of Vater carcinoma) were collected with Raman hyperspectral mapping, resulting in 191,355 Raman spectra and analyzed with comparative methodologies, specifically, hierarchical cluster analysis, non-negative matrix factorization, T-distributed stochastic neighbor embedding, principal components analysis (PCA), and convolutional neural networks (CNN). As a result, we propose an innovative approach to spectra classification by CNN, combined with PCA for molecular characterization. The CNN-based spectra classification achieved over 98% successful validation rate. Subsequent analyses of spectral features revealed differences among PC subtypes and between the cytoplasm and nuclei of their cells. Our study establishes an optimal methodology for cancer tissue spectral data classification and interpretation that allows precise and cognitive studies of cancer cells and their subcellular components, without mixing the results with cancer-surrounding tissue. As a proof of concept, we describe findings that add to the spectroscopic understanding of PC.


Assuntos
Neoplasias Pancreáticas , Análise Espectral Raman , Humanos , Análise Espectral Raman/métodos , Pâncreas , Núcleo Celular , Neoplasias Pancreáticas
4.
Nanoscale ; 15(35): 14606-14614, 2023 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-37614107

RESUMO

A better understanding of the abnormal protein aggregation and the effect of anti-aggregation agents on the fibrillation pathways and the secondary structure of aggregates can determine strategies for the early treatment of dementia. Herein, we present a combination of experimental and theoretical studies providing new insights into the influence of the anti-aggregation drug bexarotene on the secondary structure of individual amyloid-ß aggregates and its primary aggregation. The molecular rearrangements and the spatial distribution of ß-sheets within individual aggregates were monitored at the nanoscale with infrared nanospectroscopy. We observed that bexarotene limits the parallel ß-sheets formation, known to be highly abundant in fibrils at later phases of the amyloid-ß aggregation composed of in-register cross-ß structure. Moreover, we applied molecular dynamics to provide molecular-level insights into the investigated system. Both theoretical and experimental results revealed that bexarotene slows down the protein aggregation process via steric effects, largely prohibiting the antiparallel to parallel ß-sheet rearrangement. We also found that bexarotene interacts not only via the single hydrogen bond formation with the peptide backbone but also with the amino acid side residue via a hydrophobic effect. The studied model of the drug-amyloid-ß interaction contributes to a better understanding of the inhibition mechanism of the amyloid-ß aggregation by the small molecule drugs. However, our nanoscale findings need to meet in vivo research requiring different analytical approaches.


Assuntos
Peptídeos beta-Amiloides , Agregados Proteicos , Bexaroteno/farmacologia , Aminoácidos
5.
Eur J Nucl Med Mol Imaging ; 50(6): 1792-1810, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36757432

RESUMO

PURPOSE: Knowledge about pancreatic cancer (PC) biology has been growing rapidly in recent decades. Nevertheless, the survival of PC patients has not greatly improved. The development of a novel methodology suitable for deep investigation of the nature of PC tumors is of great importance. Molecular imaging techniques, such as Fourier transform infrared (FTIR) spectroscopy and Raman hyperspectral mapping (RHM) combined with advanced multivariate data analysis, were useful in studying the biochemical composition of PC tissue. METHODS: Here, we evaluated the potential of molecular imaging in differentiating three groups of PC tumors, which originate from different precursor lesions. Specifically, we comprehensively investigated adenocarcinomas (ACs): conventional ductal AC, intraductal papillary mucinous carcinoma, and ampulla of Vater AC. FTIR microspectroscopy and RHM maps of 24 PC tissue slides were obtained, and comprehensive advanced statistical analyses, such as hierarchical clustering and nonnegative matrix factorization, were performed on a total of 211,355 Raman spectra. Additionally, we employed deep learning technology for the same task of PC subtyping to enable automation. The so-called convolutional neural network (CNN) was trained to recognize spectra specific to each PC group and then employed to generate CNN-prediction-based tissue maps. To identify the DNA methylation spectral markers, we used differently methylated, isolated DNA and compared the observed spectral differences with the results obtained from cellular nuclei regions of PC tissues. RESULTS: The results showed significant differences among cancer tissues of the studied PC groups. The main findings are the varying content of ß-sheet-rich proteins within the PC cells and alterations in the relative DNA methylation level. Our CNN model efficiently differentiated PC groups with 94% accuracy. The usage of CNN in the classification task did not require Raman spectral data preprocessing and eliminated the need for extensive knowledge of statistical methodologies. CONCLUSIONS: Molecular spectroscopy combined with CNN technology is a powerful tool for PC detection and subtyping. The molecular fingerprint of DNA methylation and ß-sheet cytoplasmic proteins established by our results is different for the main PC groups and allowed the subtyping of pancreatic tumors, which can improve patient management and increase their survival. Our observations are of key importance in understanding the variability of PC and allow translation of the methodology into clinical practice by utilizing liquid biopsy testing.


Assuntos
Metilação de DNA , Neoplasias Pancreáticas , Humanos , Conformação Proteica em Folha beta , Neoplasias Pancreáticas/diagnóstico por imagem , Neoplasias Pancreáticas/patologia , Análise Espectral , Neoplasias Pancreáticas
6.
Sci Rep ; 12(1): 12158, 2022 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-35840615

RESUMO

DNA double-strand breaks (DSBs) are typical DNA lesions that can lead to cell death, translocations, and cancer-driving mutations. The repair process of DSBs is crucial to the maintenance of genomic integrity in all forms of life. However, the limitations of sensitivity and special resolution of analytical techniques make it difficult to investigate the local effects of chemotherapeutic drugs on DNA molecular structure. In this work, we exposed DNA to the anticancer antibiotic bleomycin (BLM), a damaging factor known to induce DSBs. We applied a multimodal approach combining (i) atomic force microscopy (AFM) for direct visualization of DSBs, (ii) surface-enhanced Raman spectroscopy (SERS) to monitor local conformational transitions induced by DSBs, and (iii) multivariate statistical analysis to correlate the AFM and SERS results. On the basis of SERS results, we identified that bands at 1050 cm-1 and 730 cm-1 associated with backbone and nucleobase vibrations shifted and changed their intensities, indicating conformational modifications and strand ruptures. Based on averaged SERS spectra, the PLS regressions for the number of DSBs caused by corresponding molar concentrations of bleomycin were calculated. The strong correlation (R2 = 0.92 for LV = 2) between the predicted and observed number of DSBs indicates, that the model can not only predict the number of DSBs from the spectra but also detect the spectroscopic markers of DNA damage and the associated conformational changes.


Assuntos
Quebras de DNA de Cadeia Dupla , Reparo do DNA , Bleomicina/farmacologia , DNA/química , Dano ao DNA
7.
Int J Mol Sci ; 23(7)2022 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-35408885

RESUMO

Even several thousands of DNA lesions are induced in one cell within one day. DNA damage may lead to mutations, formation of chromosomal aberrations, or cellular death. A particularly cytotoxic type of DNA damage is single- and double-strand breaks (SSBs and DSBs, respectively). In this work, we followed DNA conformational transitions induced by the disruption of DNA backbone. Conformational changes of chromatin in living cells were induced by a bleomycin (BLM), an anticancer drug, which generates SSBs and DSBs. Raman micro-spectroscopy enabled to observe chemical changes at the level of single cell and to collect hyperspectral images of molecular structure and composition with sub-micrometer resolution. We applied multivariate data analysis methods to extract key information from registered data, particularly to probe DNA conformational changes. Applied methodology enabled to track conformational transition from B-DNA to A-DNA upon cellular response to BLM treatment. Additionally, increased expression of proteins within the cell nucleus resulting from the activation of repair processes was demonstrated. The ongoing DNA repair process under the BLM action was also confirmed with confocal laser scanning fluorescent microscopy.


Assuntos
Bleomicina , Dano ao DNA , Bleomicina/farmacologia , Aberrações Cromossômicas , DNA , Reparo do DNA , Humanos
8.
Adv Colloid Interface Sci ; 301: 102614, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35190313

RESUMO

Lipids, together with molecules such as DNA and proteins, are one of the most relevant systems responsible for the existence of life. Selected lipids are able to assembly into various organized structures, such as lipid membranes. The unique properties of lipid membranes determine their complex functions, not only to separate biological environments, but also to participate in regulatory functions, absorption of nutrients, cell-cell communication, endocytosis, cell signaling, and many others. Despite numerous scientific efforts, still little is known about the reason underlying the variability within lipid membranes, and its biochemical significance. In this review, we discuss the structural complexity of lipid membranes, as well as the importance to simplify studied systems in order to understand phenomena occurring in natural, complex membranes. Such systems require a model interface to be analyzed. Therefore, here we focused on analytical studies of artificial systems at various interfaces. The molecular structure of lipid membranes, specifically the nanometric thickens of molecular bilayer, limits in a major extent the choice of highly sensitive methods suitable to study such structures. Therefore, we focused on methods that combine high sensitivity, and/or chemical selectivity, and/or nanometric spatial resolution, such as atomic force microscopy, nanospectroscopy (tip-enhanced Raman spectroscopy, infrared nanospectroscopy), phase modulation infrared reflection-absorption spectroscopy, sum-frequency generation spectroscopy. We summarized experimental and theoretical approaches providing information about molecular structure and composition, lipid spatial distribution (phase separation), organization (domain shape, molecular orientation) of lipid membranes, and real-time visualization of the influence of various molecules (proteins, drugs) on their integrity. An integral part of this review discusses the latest achievements in the field of lipid layer-based biosensors.


Assuntos
Lipídeos , Proteínas , Membrana Celular/química , Bicamadas Lipídicas/química , Lipídeos/análise , Membranas Artificiais , Microscopia de Força Atômica/métodos , Estrutura Molecular , Proteínas/metabolismo
9.
Molecules ; 26(21)2021 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-34770895

RESUMO

DNA covers the genetic information in all living organisms. Numerous intrinsic and extrinsic factors may influence the local structure of the DNA molecule or compromise its integrity. Detailed understanding of structural modifications of DNA resulting from interactions with other molecules and surrounding environment is of central importance for the future development of medicine and pharmacology. In this paper, we review the recent achievements in research on DNA structure at nanoscale. In particular, we focused on the molecular structure of DNA revealed by high-resolution AFM (Atomic Force Microscopy) imaging at liquid/solid interfaces. Such detailed structural studies were driven by the technical developments made in SPM (Scanning Probe Microscopy) techniques. Therefore, we describe here the working principles of AFM modes allowing high-resolution visualization of DNA structure under native (liquid) environment. While AFM provides well-resolved structure of molecules at nanoscale, it does not reveal the chemical structure and composition of studied samples. The simultaneous information combining the structural and chemical details of studied analyte allows achieve a comprehensive picture of investigated phenomenon. Therefore, we also summarize recent molecular spectroscopy studies, including Tip-Enhanced Raman Spectroscopy (TERS), on the DNA structure and its structural rearrangements.


Assuntos
DNA/química , DNA/ultraestrutura , Microscopia de Força Atômica , Conformação de Ácido Nucleico , Análise Espectral , Microscopia de Força Atômica/métodos , Estrutura Molecular , Solventes , Análise Espectral/métodos , Análise Espectral Raman/métodos
10.
Int J Pharm ; 591: 120031, 2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-33130219

RESUMO

Micro- and nanostructures prepared from biodegradable homopolymers and amphiphilic block copolymers (AmBCs) have found application as drug-delivery systems (DDSs). The ability to accumulate a drug is a very important parameter characterizing a given DDS. This work focuses on the impact of DDS size, the packing of polymer chains in the DDS, and drug - polymer matrix compatibility on the hydrophobic drug - loading capacity (DLC) of nano/microcarriers prepared from a biodegradable polymer or its copolymer. Using experimental measurements in combination with atomistic molecular dynamics simulations, an analysis of curcumin encapsulation in microspheres (MSs) from polylactide (PLA) homopolymer and nanoparticles (NPs) from PLA-block-poly(2-methacryloyloxyethylphosphorylcholine) AmBC was performed. The results show that curcumin has good affinity for the PLA matrix due to its hydrophobic nature. However, the DLC value is limited by the fact that curcumin only accumulates in the peripheral part of these structures. Such uneven drug distribution in the PLA matrix results from the non-homogeneous density of MSs (non-uniform packing of the polymer chains in the coil). The results also indicate that the MSs can retain a greater amount of hydrophobic drug compared to the NPs, which is associated with the formation of drug aggregates inside the PLA microparticles.


Assuntos
Nanopartículas , Preparações Farmacêuticas , Portadores de Fármacos , Tamanho da Partícula , Poliésteres , Polietilenoglicóis
11.
Molecules ; 25(11)2020 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-32471300

RESUMO

Abnormal protein aggregation has been intensively studied for over 40 years and broadly discussed in the literature due to its significant role in neurodegenerative diseases etiology. Structural reorganization and conformational changes of the secondary structure upon the aggregation determine aggregation pathways and cytotoxicity of the aggregates, and therefore, numerous analytical techniques are employed for a deep investigation into the secondary structure of abnormal protein aggregates. Molecular spectroscopies, including Raman and infrared ones, are routinely applied in such studies. Recently, the nanoscale spatial resolution of tip-enhanced Raman and infrared nanospectroscopies, as well as the high sensitivity of the surface-enhanced Raman spectroscopy, have brought new insights into our knowledge of abnormal protein aggregation. In this review, we order and summarize all nano- and micro-spectroscopic marker bands related to abnormal aggregation. Each part presents the physical principles of each particular spectroscopic technique listed above and a concise description of all spectral markers detected with these techniques in the spectra of neurodegenerative proteins and their model systems. Finally, a section concerning the application of multivariate data analysis for extraction of the spectral marker bands is included.


Assuntos
Agregados Proteicos/fisiologia , Amiloide/química , Animais , Humanos , Análise Multivariada , Análise de Componente Principal , Análise Espectral Raman
12.
Molecules ; 25(3)2020 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-32012927

RESUMO

Every cell in a living organism is constantly exposed to physical and chemical factors which damage the molecular structure of proteins, lipids, and nucleic acids. Cellular DNA lesions are the most dangerous because the genetic information, critical for the identity and function of each eukaryotic cell, is stored in the DNA. In this review, we describe spectroscopic markers of DNA damage, which can be detected by infrared, Raman, surface-enhanced Raman, and tip-enhanced Raman spectroscopies, using data acquired from DNA solutions and mammalian cells. Various physical and chemical DNA damaging factors are taken into consideration, including ionizing and non-ionizing radiation, chemicals, and chemotherapeutic compounds. All major spectral markers of DNA damage are presented in several tables, to give the reader a possibility of fast identification of the spectral signature related to a particular type of DNA damage.


Assuntos
Dano ao DNA , DNA/efeitos dos fármacos , DNA/efeitos da radiação , DNA/química , Humanos , Modelos Moleculares , Conformação Molecular , Radiação/classificação , Análise Espectral Raman
13.
Chem Phys Lipids ; 223: 104784, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31199906

RESUMO

1,6-Diphenyl-1,3,5-hexatriene (DPH) is one of the most commonly used fluorescent probes to study dynamical and structural properties of lipid bilayers and cellular membranes via measuring steady-state or time-resolved fluorescence anisotropy. In this study, we present a limitation in the use of DPH to predict the order of lipid acyl chains when the lipid bilayer is doped with itraconazole (ITZ), an antifungal drug. Our steady-state fluorescence anisotropy measurements showed a significant decrease in fluorescence anisotropy of DPH embedded in the ITZ-containing membrane, suggesting a substantial increase in membrane fluidity, which indirectly indicates a decrease in the order of the hydrocarbon chains. This result or its interpretation is in disagreement with the fluorescence recovery after photobleaching measurements and molecular dynamics (MD) simulation data. The results of these experiments and calculations indicate an increase in the hydrocarbon chain order. The MD simulations of the bilayer containing both ITZ and DPH provide explanations for these observations. Apparently, in the presence of the drug, the DPH molecules are pushed deeper into the hydrophobic membrane core below the lipid double bonds, and the probe predominately adopts the orientation of the ITZ molecules that is parallel to the membrane surface, instead of orienting parallel to the lipid acyl chains. For this reason, DPH anisotropy provides information related to the less ordered central region of the membrane rather than reporting the properties of the upper segments of the lipid acyl chains.


Assuntos
Antifúngicos/química , Difenilexatrieno/química , Corantes Fluorescentes/química , Itraconazol/química , Bicamadas Lipídicas/química , Fosfatidilcolinas/química , Polarização de Fluorescência , Interações Hidrofóbicas e Hidrofílicas , Simulação de Dinâmica Molecular , Propriedades de Superfície
14.
ACS Biomater Sci Eng ; 5(2): 780-794, 2019 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-33405839

RESUMO

Polycations are an attractive class of macromolecules with promising applications as drug/gene carriers and biocides. The chemical structure and concentration of a polycation determine its interaction with cellular membranes and, hence, are crucial parameters for designing efficient nontoxic polycations. However, the interaction of polycations with biomembranes at the molecular level and the corresponding free-energy landscape is not well understood. In this work, we investigate the molecular mechanism of interaction between a strong polycation substituted with alkyl moieties and zwitterionic membranes via long-time-scale all-atom molecular dynamics simulations and free-energy calculations combined with Langmuir monolayer, atomic force microscopy, and calcein-release experimental measurements. We found that the membrane activity of the polycation and its ability to induce pores in the membranes can be attributed to the polycation-induced changes in the bilayer organization, such as reduced membrane thickness, increased disorder of the acyl chains, reduced packing, and electrostatic field gradients between membrane leaflets. These changes facilitate the penetration of water into the membrane and the formation of aqueous defects/pores. The calculated free-energy profiles indicate that the polycation lowers the nucleation barrier for pore opening and the free energy for pore formation in a concentration-dependent manner. Above the critical coverage of the membrane, the polycation nucleates spontaneous pores in zwitterionic membranes. Our work demonstrates the potential of combining enhanced sampling methods in MD simulations with experiments for a quantitative description of various events in the polycation-membrane interaction cycle, such as strong adsorption on the membrane due to hydrophobic and electrostatic interactions, and pore formation.

15.
J Phys Chem B ; 122(28): 7080-7090, 2018 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-29927603

RESUMO

Nanoparticles made of amphiphilic block copolymers comprising biodegradable core-forming blocks are very attractive for the preparation of drug-delivery systems with sustained release. Their therapeutic applications are, however, hindered by low values of the drug-loading content (DLC). The compatibility between the drug and the core-forming block of the copolymer is considered the most important factor affecting the DLC value. However, the molecular picture of the hydrophobic drug-copolymer interaction is still not fully recognized. Herein, we examined this complex issue using a range of experimental techniques in combination with atomistic molecular dynamics simulations. We performed an analysis of the interaction between itraconazole, a model hydrophobic drug, and a poly(ethylene glycol)-poly(lactide- co-glycolide) (PEG-PLGA) copolymer, a biodegradable copolymer commonly used for the preparation of drug-delivery systems. Our results clearly show that the limited capacity of the PEG-PLGA nanoparticles for the accumulation of hydrophobic drugs is due to the fact that the drug molecules are located only at the water-polymer interface, whereas the interior of the PLGA core remains empty. These findings can be useful in the rational design and development of amphiphilic copolymer-based drug-delivery systems.


Assuntos
Portadores de Fármacos/química , Itraconazol/química , Nanopartículas/química , Poliésteres/química , Polietilenoglicóis/química , Difusão Dinâmica da Luz , Interações Hidrofóbicas e Hidrofílicas , Itraconazol/metabolismo , Simulação de Dinâmica Molecular , Água/química
16.
J Phys Chem B ; 121(30): 7318-7326, 2017 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-28678504

RESUMO

Interaction of polycations with lipid membranes is a very important issue in many biological and medical applications such as gene delivery or antibacterial usage. In this work, we address the influence of hydrophobic substitution of strong polycations containing quaternary ammonium groups on the polymer-zwitterionic membrane interactions. In particular, we focus on the polymer tendency to adsorb on or/and incorporate into the membrane. We used complementary experimental and computational methods to enhance our understanding of the mechanism of the polycation-membrane interactions. Polycation adsorption on liposomes was assessed using dynamic light scattering (DLS) and zeta potential measurements. The ability of the polymers to form hydrophilic pores in the membrane was evaluated using a calcein-release method. The polymer-membrane interaction at the molecular scale was explored by performing atomistic molecular dynamics (MD) simulations. Our results show that the length of the alkyl side groups plays an essential role in the polycation adhesion on the zwitterionic surface, while the degree of substitution affects the polycation ability to incorporate into the membrane. Both the experimental and computational results show that the membrane permeability can be dramatically affected by the amount of alkyl side groups attached to the polycation main chain.


Assuntos
Lipossomos/química , Poliaminas/química , Adsorção , Compostos de Amônio/química , Microscopia Crioeletrônica , Difusão Dinâmica da Luz , Interações Hidrofóbicas e Hidrofílicas , Lipossomos/metabolismo , Simulação de Dinâmica Molecular , Poliaminas/metabolismo , Polieletrólitos
17.
Eur J Pharm Sci ; 100: 116-125, 2017 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-28087354

RESUMO

Uptake of piroxicam, a non-steroidal anti-inflammatory drug, from the intestines after oral intake is limited due to its low solubility and its wide use is associated with several side effects related to the gastrointestinal tract. In this study, all-atom molecular dynamics (MD) simulations and fluorescent spectroscopy were employed to investigate the interaction of piroxicam in neutral, zwitterionic, and cationic forms with lipid bilayers composed of phosphatidylcholine, cholesterol, and PEGylated lipids. Our study was aimed to assess the potential for encapsulation of piroxicam in liposomal carriers and to shed more light on the process of gastrointestinal tract injury by the drug. Through both the MD simulations and laser scanning confocal microscopy, we have demonstrated that all forms of piroxicam can associate with the lipid bilayers and locate close to the water-membrane interface. Conventional liposomes used in drug delivery are usually stabilized by the addition of cholesterol and have their bloodstream lifetime extended through the inclusion of PEGylated lipids in the formulation to create a protective polymer corona. For this reason, we tested the effect of these two modifications on the behavior of piroxicam in the membrane. When the bilayer was PEGylated, piroxicam localize to the PEG layer and within the lipid headgroup region. This suggests that PEGylated liposomes are capable of carrying a larger quantity of piroxicam than the conventional ones.


Assuntos
Anti-Inflamatórios não Esteroides , Bicamadas Lipídicas/química , Piroxicam , Anti-Inflamatórios não Esteroides/administração & dosagem , Anti-Inflamatórios não Esteroides/efeitos adversos , Anti-Inflamatórios não Esteroides/química , Sistemas de Liberação de Medicamentos , Lipossomos , Simulação de Dinâmica Molecular , Piroxicam/administração & dosagem , Piroxicam/efeitos adversos , Piroxicam/química , Estômago/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA