Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Mol Metab ; 25: 107-118, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31029696

RESUMO

OBJECTIVE: Energy metabolism and insulin action follow a diurnal rhythm. It is therefore important that investigations into dysregulation of these pathways are relevant to the physiology of this diurnal rhythm. METHODS: We examined glucose uptake, markers of insulin action, and the phosphorylation of insulin signaling intermediates in muscle of chow and high fat, high sucrose (HFHS) diet-fed rats over the normal diurnal cycle. RESULTS: HFHS animals displayed hyperinsulinemia but had reduced systemic glucose disposal and lower muscle glucose uptake during the feeding period. Analysis of gene expression, enzyme activity, protein abundance and phosphorylation revealed a clear diurnal regulation of substrate oxidation pathways with no difference in Akt signaling in muscle. Transfection of a constitutively active Akt2 into the muscle of HFHS rats did not rescue diet-induced reductions in insulin-stimulated glucose uptake. CONCLUSIONS: These studies suggest that reduced glucose uptake in muscle during the diurnal cycle induced by short-term HFHS-feeding is not the result of reduced insulin signaling.


Assuntos
Ritmo Circadiano/fisiologia , Dieta Hiperlipídica/efeitos adversos , Insulina/metabolismo , Músculo Esquelético/metabolismo , Transdução de Sinais/fisiologia , Animais , Glicemia , Modelos Animais de Doenças , Metabolismo Energético , Expressão Gênica , Resistência à Insulina/fisiologia , Masculino , Fosforilação , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Mensageiro/metabolismo , Ratos , Ratos Wistar
2.
Biochim Biophys Acta ; 1832(1): 228-38, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22952003

RESUMO

Energy metabolism follows a diurnal pattern responding to the light/dark cycle and food availability. This study investigated the impact of restricting feeding to the daylight hours and feeding a high fat diet on circadian clock (bmal1, dbp, tef and e4bp4) and metabolic (pepck, fas, ucp3, pdk4) gene expression and markers of energy metabolism in muscle and liver of rats. The results show that in chow-fed rats switched to daylight feeding, the peak diurnal expression of genes in liver was shifted by 6-12h while expression of these genes in muscle remained in a similar phase to rats feeding ad libitum. High fat feeding during the daylight hours had limited effect on clock gene expression in liver or muscle but shifted the peak expression of metabolic genes (pepck, fas) in liver by 6-12h. The differential effects of daylight feeding on gene and protein expression in muscle and liver were accompanied by an 8% reduction in whole body energy expenditure, a 20-30% increased glycogen content during the light phase in muscle of day-fed rats and increased adipose tissue deposition per gram food consumed. These data demonstrate that a mismatch of feeding and light/dark cycle disrupts tissue metabolism in muscle with significant consequences for whole body energy homeostasis.


Assuntos
Ritmo Circadiano , Metabolismo Energético , Fígado/metabolismo , Músculo Esquelético/metabolismo , Animais , Dieta Hiperlipídica , Gorduras na Dieta/metabolismo , Regulação da Expressão Gênica , Masculino , Proteínas Circadianas Period/genética , Proteínas Circadianas Period/metabolismo , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA