Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Rev Sci Instrum ; 94(2): 023507, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36859040

RESUMO

The PROBIES diagnostic is a new, highly flexible, imaging and energy spectrometer designed for laser-accelerated protons. The diagnostic can detect low-mode spatial variations in the proton beam profile while resolving multiple energies on a single detector or more. When a radiochromic film stack is employed for "single-shot mode," the energy resolution of the stack can be greatly increased while reducing the need for large numbers of films; for example, a recently deployed version allowed for 180 unique energy measurements spanning ∼3 to 75 MeV with <0.4 MeV resolution using just 20 films vs 180 for a comparable traditional film and filter stack. When utilized with a scintillator, the diagnostic can be run in high-rep-rate (>Hz rate) mode to recover nine proton energy bins. We also demonstrate a deep learning-based method to analyze data from synthetic PROBIES images with greater than 95% accuracy on sub-millisecond timescales and retrained with experimental data to analyze real-world images on sub-millisecond time-scales with comparable accuracy.

2.
Rev Sci Instrum ; 93(9): 093514, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-36182503

RESUMO

A novel dual-energy fast neutron imaging technique is presented using short-pulse laser-driven neutron sources to leverage their inherent adaptive spectral control to enable 3D volume segmentation and reconstruction. Laser-accelerated ion beams incident onto secondary targets create directional, broadband, MeV-class neutrons. Synthetic radiographs are produced of multi-material objects using ion and neutron spectra derived from analytic and numerical models. It is demonstrated that neutron images generated from small changes to the neutron spectra, controlled by altering the initial laser conditions, are sufficient to isolate materials with differing attenuation coefficients. This is first demonstrated using a simplistic combinatorial isolation method and then by employing more advanced reconstruction algorithms to reduce artifacts and generate a segmentation volume of the constituent materials.

3.
Phys Rev E ; 103(5-1): 053207, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-34134339

RESUMO

We report on the increase in the accelerated electron number and energy using compound parabolic concentrator (CPC) targets from a short-pulse (∼150 fs), high-intensity (>10^{18} W/cm^{2}), and high-contrast (∼10^{8}) laser-solid interaction. We report on experimental measurements using CPC targets where the hot-electron temperature is enhanced up to ∼9 times when compared to planar targets. The temperature measured from the CPC target is 〈T_{e}〉=4.4±1.3 MeV. Using hydrodynamic and particle in cell simulations, we identify the primary source of this temperature enhancement is the intensity increase caused by the CPC geometry that focuses the laser, reducing the focal spot and therefore increasing the intensity of the laser-solid interaction, which is also consistent with analytic expectations for the geometrical focusing.

4.
Nat Commun ; 10(1): 4156, 2019 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-31519881

RESUMO

Our understanding of a large range of astrophysical phenomena depends on a precise knowledge of charged particle nuclear reactions that occur at very low rates, which are difficult to measure under relevant plasma conditions. Here, we describe a method for generating dense plasmas at effective ion temperatures >20 keV, sufficient to induce measurable charged particle nuclear reactions. Our approach uses ultra-intense lasers to drive micron-sized, encapsulated nanofoam targets. Energetic electrons generated in the intense laser interaction pass through the foam, inducing a rapid expansion of the foam ions; this results in a hot, near-solid density plasma. We present the laser and target conditions necessary to achieve these conditions and illustrate the system performance using three-dimensional particle-in-cell simulations, outline potential applications and calculate expected nuclear reaction rates in the D(d,n) and 12C(p,γ) systems assuming CD, or CH aerogel foams.

5.
Phys Rev E ; 99(5-1): 053207, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-31212418

RESUMO

Proton radiography experiments of laser-irradiated hohlraums performed at the OMEGA laser facility are analyzed using three-dimensional (3D) hydrodynamic simulations coupled to a proton trajectography package. Experiments with three different laser irradiation patterns were performed, and each produced a distinct proton image. By comparing these results with synthetic proton images obtained by sending protons through plasma profiles in the hohlraum obtained from 3D radiation hydrodynamic simulations, it is found that the simulated images agree favorably with the experimental images when electric fields, due to the electron pressure gradients that arise from 3D structures occurring during plasma expansion, are included. These comparisons provide quantitative estimates of the electric field present inside the hohlraums.

6.
Phys Rev Lett ; 120(9): 095001, 2018 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-29547332

RESUMO

The structure of a strong collisional shock front forming in a plasma is directly probed for the first time in laser-driven gas-jet experiments. Thomson scattering of a 526.5 nm probe beam was used to diagnose temperature and ion velocity distribution in a strong shock (M∼11) propagating through a low-density (ρ∼0.01 mg/cc) plasma composed of hydrogen. A forward-streaming population of ions traveling in excess of the shock velocity was observed to heat and slow down on an unmoving, unshocked population of cold protons, until ultimately the populations merge and begin to thermalize. Instabilities are observed during the merging, indicating a uniquely plasma-phase process in shock front formation.

7.
Rev Sci Instrum ; 88(5): 053501, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28571471

RESUMO

Tuning the energy of an x-ray probe to an absorption line or edge can provide material-specific measurements that are particularly useful for interfaces. Simulated hard x-ray images above the Fe K-edge are presented to examine ion diffusion across an interface between Fe2O3 and SiO2 aerogel foam materials. The simulations demonstrate the feasibility of such a technique for measurements of density scale lengths near the interface with submicron spatial resolution. A proof-of-principle experiment is designed and performed at the Linac coherent light source facility. Preliminary data show the change of the interface after shock compression and heating with simultaneous fluorescence spectra for temperature determination. The results provide the first demonstration of using x-ray imaging at an absorption edge as a diagnostic to detect ultrafast phenomena for interface physics in high-energy-density systems.

8.
Rev Sci Instrum ; 87(11): 11E704, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27910515

RESUMO

Pinhole imaging of large (mm scale) carbon-deuterium (CD) plasmas by proton self-emission has been used for the first time to study the microphysics of shock formation, which is of astrophysical relevance. The 3 MeV deuterium-deuterium (DD) fusion proton self-emission from these plasmas is imaged using a novel pinhole imaging system, with up to five different 1 mm diameter pinholes positioned 25 cm from target-chamber center. CR39 is used as the detector medium, positioned at 100 cm distance from the pinhole for a magnification of 4 ×. A Wiener deconvolution algorithm is numerically demonstrated and used to interpret the images. When the spatial morphology is known, this algorithm accurately reproduces the size of features larger than about half the pinhole diameter. For these astrophysical plasma experiments on the National Ignition Facility, this provides a strong constraint on simulation modeling of the experiment.

9.
Nat Commun ; 7: 13081, 2016 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-27713403

RESUMO

The remarkable discovery by the Chandra X-ray observatory that the Crab nebula's jet periodically changes direction provides a challenge to our understanding of astrophysical jet dynamics. It has been suggested that this phenomenon may be the consequence of magnetic fields and magnetohydrodynamic instabilities, but experimental demonstration in a controlled laboratory environment has remained elusive. Here we report experiments that use high-power lasers to create a plasma jet that can be directly compared with the Crab jet through well-defined physical scaling laws. The jet generates its own embedded toroidal magnetic fields; as it moves, plasma instabilities result in multiple deflections of the propagation direction, mimicking the kink behaviour of the Crab jet. The experiment is modelled with three-dimensional numerical simulations that show exactly how the instability develops and results in changes of direction of the jet.


Assuntos
Fenômenos Astronômicos , Campos Magnéticos , Modelos Teóricos , Gases em Plasma , Simulação por Computador , Lasers
10.
Rev Sci Instrum ; 86(3): 033302, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25832218

RESUMO

Proton radiography is a useful diagnostic of high energy density (HED) plasmas under active theoretical and experimental development. In this paper, we describe a new simulation tool that interacts realistic laser-driven point-like proton sources with three dimensional electromagnetic fields of arbitrary strength and structure and synthesizes the associated high resolution proton radiograph. The present tool's numerical approach captures all relevant physics effects, including effects related to the formation of caustics. Electromagnetic fields can be imported from particle-in-cell or hydrodynamic codes in a streamlined fashion, and a library of electromagnetic field "primitives" is also provided. This latter capability allows users to add a primitive, modify the field strength, rotate a primitive, and so on, while quickly generating a high resolution radiograph at each step. In this way, our tool enables the user to deconstruct features in a radiograph and interpret them in connection to specific underlying electromagnetic field elements. We show an example application of the tool in connection to experimental observations of the Weibel instability in counterstreaming plasmas, using ∼10(8) particles generated from a realistic laser-driven point-like proton source, imaging fields which cover volumes of ∼10 mm(3). Insights derived from this application show that the tool can support understanding of HED plasmas.

11.
Artigo em Inglês | MEDLINE | ID: mdl-26764843

RESUMO

The consequences of small scale-length precursor plasmas on high-intensity laser-driven relativistic electrons are studied via experiments and simulations. Longer scale-length plasmas are shown to dramatically increase the efficiency of electron acceleration, yet, if too long, they reduce the coupling of these electrons into the solid target. Evidence for the existence of an optimal plasma scale-length is presented and estimated to be from 1 to 5µm. Experiments on the Trident laser (I=5×10(19)W/cm(2)) diagnosed via Kα emission from Cu wires attached to Au cones are quantitively reproduced using 2D particle-in-cell simulations that capture the full temporal and spatial scale of the nonlinear laser interaction and electron transport. The simulations indicate that 32%±8%(6.5%±2%) of the laser energy is coupled into electrons of all energies (1-3 MeV) reaching the inner cone tip and that, with an optimized scale-length, this could increase to 35% (9%).

12.
Phys Rev Lett ; 112(18): 185001, 2014 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-24856701

RESUMO

Clear evidence of the transition from hydrodynamiclike to strongly kinetic shock-driven implosions is, for the first time, revealed and quantitatively assessed. Implosions with a range of initial equimolar D3He gas densities show that as the density is decreased, hydrodynamic simulations strongly diverge from and increasingly overpredict the observed nuclear yields, from a factor of ∼2 at 3.1 mg/cm3 to a factor of 100 at 0.14 mg/cm3. (The corresponding Knudsen number, the ratio of ion mean-free path to minimum shell radius, varied from 0.3 to 9; similarly, the ratio of fusion burn duration to ion diffusion time, another figure of merit of kinetic effects, varied from 0.3 to 14.) This result is shown to be unrelated to the effects of hydrodynamic mix. As a first step to garner insight into this transition, a reduced ion kinetic (RIK) model that includes gradient-diffusion and loss-term approximations to several transport processes was implemented within the framework of a one-dimensional radiation-transport code. After empirical calibration, the RIK simulations reproduce the observed yield trends, largely as a result of ion diffusion and the depletion of the reacting tail ions.

13.
Phys Rev Lett ; 111(23): 235003, 2013 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-24476281

RESUMO

Monoenergetic-proton radiographs of laser-generated, high-Mach-number plasma jets colliding at various angles shed light on the structures and dynamics of these collisions. The observations compare favorably with results from 2D hydrodynamic simulations of multistream plasma jets, and also with results from an analytic treatment of electron flow and magnetic field advection. In collisions of two noncollinear jets, the observed flow structure is similar to the analytic model's prediction of a characteristic feature with a narrow structure pointing in one direction and a much thicker one pointing in the opposite direction. Spontaneous magnetic fields, largely azimuthal around the colliding jets and generated by the well-known ∇T(e)×∇n(e) Biermann battery effect near the periphery of the laser spots, are demonstrated to be "frozen in" the plasma (due to high magnetic Reynolds number Re(M)∼5×10(4)) and advected along the jet streamlines of the electron flow. These studies provide novel insight into the interactions and dynamics of colliding plasma jets.

14.
Phys Rev Lett ; 109(14): 145006, 2012 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-23083255

RESUMO

A novel time-resolved diagnostic is used to record the critical surface motion during picosecond-scale relativistic laser interaction with a solid target. Single-shot measurements of the specular light show a redshift decreasing with time during the interaction, corresponding to a slowing-down of the hole boring process into overdense plasma. On-shot full characterization of the laser pulse enables simulations of the experiment without any free parameters. Two-dimensional particle-in-cell simulations yield redshifts that agree with the data, and support a simple explanation of the slowing-down of the critical surface based on momentum conservation between ions and reflected laser light.

15.
Phys Rev Lett ; 108(11): 115004, 2012 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-22540481

RESUMO

The effect of increasing prepulse energy levels on the energy spectrum and coupling into forward-going electrons is evaluated in a cone-guided fast-ignition relevant geometry using cone-wire targets irradiated with a high intensity (10(20) W/cm(2)) laser pulse. Hot electron temperature and flux are inferred from Kα images and yields using hybrid particle-in-cell simulations. A two-temperature distribution of hot electrons was required to fit the full profile, with the ratio of energy in a higher energy (MeV) component increasing with a larger prepulse. As prepulse energies were increased from 8 mJ to 1 J, overall coupling from laser to all hot electrons entering the wire was found to fall from 8.4% to 2.5% while coupling into only the 1-3 MeV electrons dropped from 0.57% to 0.03%.

16.
Phys Rev Lett ; 108(2): 025001, 2012 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-22324691

RESUMO

This Letter reports the first time-gated proton radiography of the spatial structure and temporal evolution of how the fill gas compresses the wall blowoff, inhibits plasma jet formation, and impedes plasma stagnation in the hohlraum interior. The potential roles of spontaneously generated electric and magnetic fields in the hohlraum dynamics and capsule implosion are discussed. It is shown that interpenetration of the two materials could result from the classical Rayleigh-Taylor instability occurring as the lighter, decelerating ionized fill gas pushes against the heavier, expanding gold wall blowoff. This experiment showed new observations of the effects of the fill gas on x-ray driven implosions, and an improved understanding of these results could impact the ongoing ignition experiments at the National Ignition Facility.

17.
Phys Rev Lett ; 105(1): 015003, 2010 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-20867455

RESUMO

Detailed angle and energy resolved measurements of positrons ejected from the back of a gold target that was irradiated with an intense picosecond duration laser pulse reveal that the positrons are ejected in a collimated relativistic jet. The laser-positron energy conversion efficiency is ∼2×10{-4}. The jets have ∼20 degree angular divergence and the energy distributions are quasimonoenergetic with energy of 4 to 20 MeV and a beam temperature of ∼1 MeV. The sheath electric field on the surface of the target is shown to determine the positron energy. The positron angular and energy distribution is controlled by varying the sheath field, through the laser conditions and target geometry.

18.
Phys Rev Lett ; 104(5): 055002, 2010 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-20366771

RESUMO

The viability of fast-ignition (FI) inertial confinement fusion hinges on the efficient transfer of laser energy to the compressed fuel via multi-MeV electrons. Preformed plasma due to the laser prepulse strongly influences ultraintense laser plasma interactions and hot electron generation in the hollow cone of an FI target. We induced a prepulse and consequent preplasma in copper cone targets and measured the energy deposition zone of the main pulse by imaging the emitted K_{alpha} radiation. Simulation of the radiation hydrodynamics of the preplasma and particle in cell modeling of the main pulse interaction agree well with the measured deposition zones and provide an insight into the energy deposition mechanism and electron distribution. It was demonstrated that a under these conditions a 100 mJ prepulse eliminates the forward going component of approximately 2-4 MeV electrons.

19.
Phys Rev Lett ; 100(8): 085004, 2008 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-18352633

RESUMO

We report the first direct measurements of total absorption of short laser pulses on solid targets in the ultrarelativistic regime. The data show an enhanced absorption at intensities above 10(20) W/cm(2), reaching 60% for near-normal incidence and 80%-90% for 45 degrees incidence. Two-dimensional particle-in-cell simulations demonstrate that such high absorption is consistent with both interaction with preplasma and hole boring by the intense laser pulse. A large redshift in the second harmonic indicates a surface recession velocity of 0.035c.

20.
Phys Rev E Stat Nonlin Soft Matter Phys ; 76(5 Pt 2): 056402, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18233771

RESUMO

We present measurements of the fast-electron-relaxation time in short-pulse (0.5 ps) laser-solid interactions for laser intensities of 10(17), 10(18), and 10(19) Wcm2, using a picosecond time-resolved x-ray spectrometer and a time-integrated electron spectrometer. We find that the laser coupling to hot electrons increases as the laser intensity becomes relativistic, and that the thermalization of fast electrons occurs over time scales on the order of 10 ps at all laser intensities. The experimental data are analyzed using a combination of models that include Kalpha generation, collisional coupling, and plasma expansion.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...