Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mol Syst Biol ; 20(8): 972-995, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38907068

RESUMO

Mass spectrometry has revolutionized cell signaling research by vastly simplifying the analysis of many thousands of phosphorylation sites in the human proteome. Defining the cellular response to perturbations is crucial for further illuminating the functionality of the phosphoproteome. Here we describe µPhos ('microPhos'), an accessible phosphoproteomics platform that permits phosphopeptide enrichment from 96-well cell culture and small tissue amounts in <8 h total processing time. By greatly minimizing transfer steps and liquid volumes, we demonstrate increased sensitivity, >90% selectivity, and excellent quantitative reproducibility. Employing highly sensitive trapped ion mobility mass spectrometry, we quantify ~17,000 Class I phosphosites in a human cancer cell line using 20 µg starting material, and confidently localize ~6200 phosphosites from 1 µg. This depth covers key signaling pathways, rendering sample-limited applications and perturbation experiments with hundreds of samples viable. We employ µPhos to study drug- and time-dependent response signatures in a leukemia cell line, and by quantifying 30,000 Class I phosphosites in the mouse brain we reveal distinct spatial kinase activities in subregions of the hippocampal formation.


Assuntos
Fosfopeptídeos , Fosfoproteínas , Proteômica , Proteômica/métodos , Humanos , Animais , Camundongos , Fosfoproteínas/metabolismo , Fosforilação , Linhagem Celular Tumoral , Fosfopeptídeos/metabolismo , Fosfopeptídeos/análise , Espectrometria de Massas/métodos , Transdução de Sinais , Proteoma/metabolismo , Reprodutibilidade dos Testes , Hipocampo/metabolismo , Hipocampo/citologia
2.
Anal Bioanal Chem ; 415(27): 6633-6645, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37758903

RESUMO

Recent advances have rekindled the interest in ion mobility as an additional dimension of separation in mass spectrometry (MS)-based proteomics. Ion mobility separates ions according to their size and shape in the gas phase. Here, we set out to investigate the effect of 22 different post-translational modifications (PTMs) on the collision cross section (CCS) of peptides. In total, we analyzed ~4300 pairs of matching modified and unmodified peptide ion species by trapped ion mobility spectrometry (TIMS). Linear alignment based on spike-in reference peptides resulted in highly reproducible CCS values with a median coefficient of variation of 0.26%. On a global level, we observed a redistribution in the m/z vs. ion mobility space for modified peptides upon changes in their charge state. Pairwise comparison between modified and unmodified peptides of the same charge state revealed median shifts in CCS between -1.4% (arginine citrullination) and +4.5% (O-GlcNAcylation). In general, increasing modified peptide masses were correlated with higher CCS values, in particular within homologous PTM series. However, investigating the ion populations in more detail, we found that the change in CCS can vary substantially for a given PTM and is partially correlated with the gas phase structure of its unmodified counterpart. In conclusion, our study shows PTM- and sequence-specific effects on the cross section of peptides, which could be further leveraged for proteome-wide PTM analysis.


Assuntos
Peptídeos , Proteômica , Peptídeos/química , Espectrometria de Massas/métodos , Proteoma , Processamento de Proteína Pós-Traducional , Íons/química
3.
Redox Biol ; 65: 102807, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37437449

RESUMO

Selenium-binding protein 1 (SELENBP1) was reported to act as a methanethiol oxidase (MTO) in humans, catalyzing the conversion of methanethiol to hydrogen peroxide, hydrogen sulfide and formaldehyde. Here, we identify copper ions as essential to this novel MTO activity. Site-directed mutagenesis of putative copper-binding sites in human SELENBP1 produced as recombinant protein in E. coli resulted in loss of its enzymatic function. On the other hand, the eponymous binding of selenium (as selenite) was no requirement for MTO activity and only moderately increased SELENBP1-catalyzed oxidation of methanethiol. Furthermore, SEMO-1, the SELENBP1 ortholog recently identified in the nematode C. elegans, also requires copper ions, and MTO activity was enhanced or abrogated, respectively, if worms were grown in the presence of cupric chloride or of a Cu chelator. In addition to methanethiol, we identified novel substrates of SELENBP1 from the group of volatile sulfur compounds, ranging from ethanethiol to 1-pentanethiol as well as 2-propene-1-thiol. Gut microbiome-derived methanethiol as well as food-derived volatile sulfur compounds (VSCs) account for malodors that may contribute to extraoral halitosis in humans, if not metabolized properly. As SELENBP1 is particularly abundant in tissues exposed to VSCs, such as colon, liver, and lung, it appears to contribute to copper-dependent VSC degradation.


Assuntos
Caenorhabditis elegans , Cobre , Animais , Humanos , Cobre/metabolismo , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Ligação a Selênio/genética , Proteínas de Ligação a Selênio/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Compostos de Sulfidrila/metabolismo , Compostos de Enxofre/química , Oxirredutases/metabolismo , Ceruloplasmina/metabolismo
4.
Dermatol Ther ; 35(2): e15236, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34845807

RESUMO

Wound products that reliably support healing of chronic leg ulcers remain a huge unmet need in clinical practice. Due to the lack of standardized comparable protocols and different systems for platelet-rich plasma (PRP) preparation, there is limited data on healing rates in chronic venous ulcers. In our case series with a total of seven chronic leg ulcers in four patients, we investigated the healing rates based on standardized digital photographs of chronic venous ulcers after application of topical PRP using a digital imaging software. In 5 out of 7 ulcers, the PRP-treated wound half showed faster healing as compared the control half of the wound. In this case series, PRP-treated sides of chronic venous leg ulcers showed a tendency for accelerated healing as compared to nontreated collateral wound side. Our data support the evaluation of topical PRP treatment in the management of chronic venous leg ulcers.


Assuntos
Úlcera da Perna , Plasma Rico em Plaquetas , Úlcera Varicosa , Administração Tópica , Humanos , Perna (Membro) , Úlcera da Perna/terapia , Úlcera Varicosa/terapia , Cicatrização
5.
Redox Biol ; 43: 101972, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33901808

RESUMO

Methanethiol, a gas with the characteristic smell of rotten cabbage, is a product of microbial methionine degradation. In the human body, methanethiol originates primarily from bacteria residing in the lumen of the large intestine. Selenium-binding protein 1 (SELENBP1), a marker protein of mature enterocytes, has recently been identified as a methanethiol oxidase (MTO). It catalyzes the conversion of methanethiol to hydrogen sulfide (H2S), hydrogen peroxide (H2O2) and formaldehyde. Here, human Caco-2 intestinal epithelial cells were subjected to enterocyte-like differentiation, followed by analysis of SELENBP1 levels and MTO activity. To that end, we established a novel coupled assay to assess MTO activity mimicking the proximity of microbiome and intestinal epithelial cells in vivo. The assay is based on in situ-generation of methanethiol as catalyzed by a bacterial recombinant l-methionine gamma-lyase (MGL), followed by detection of H2S and H2O2. Applying this assay, we verified the loss and impairment of MTO function in SELENBP1 variants (His329Tyr; Gly225Trp) previously identified in individuals with familial extraoral halitosis. MTO activity was strongly enhanced in Caco-2 cells upon enterocyte differentiation, in parallel with increased SELENBP1 levels. This suggests that mature enterocytes located at the tip of colonic crypts are capable of eliminating microbiome-derived methanethiol.


Assuntos
Enterócitos , Proteínas de Ligação a Selênio , Células CACO-2 , Ensaios Enzimáticos , Humanos , Peróxido de Hidrogênio , Oxirredutases , Compostos de Sulfidrila
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA