Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 968, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38320988

RESUMO

Tumor microtubes (TMs) connect glioma cells to a network with considerable relevance for tumor progression and therapy resistance. However, the determination of TM-interconnectivity in individual tumors is challenging and the impact on patient survival unresolved. Here, we establish a connectivity signature from single-cell RNA-sequenced (scRNA-Seq) xenografted primary glioblastoma (GB) cells using a dye uptake methodology, and validate it with recording of cellular calcium epochs and clinical correlations. Astrocyte-like and mesenchymal-like GB cells have the highest connectivity signature scores in scRNA-sequenced patient-derived xenografts and patient samples. In large GB cohorts, TM-network connectivity correlates with the mesenchymal subtype and dismal patient survival. CHI3L1 gene expression serves as a robust molecular marker of connectivity and functionally influences TM networks. The connectivity signature allows insights into brain tumor biology, provides a proof-of-principle that tumor cell TM-connectivity is relevant for patients' prognosis, and serves as a robust prognostic biomarker.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Glioma , Humanos , Glioblastoma/genética , Glioma/genética , Neoplasias Encefálicas/genética , Proteína 1 Semelhante à Quitinase-3
2.
Neuro Oncol ; 26(2): 266-278, 2024 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-37715782

RESUMO

BACKGROUND: Neuroligin 4 X-linked (NLGN4X) harbors a human leukocyte antigen (HLA)-A*02-restricted tumor-associated antigen, overexpressed in human gliomas, that was found to induce specific cytotoxic T cell responses following multi-peptide vaccination in patients with newly diagnosed glioblastoma. METHODS: T cell receptor (TCR) discovery was performed using droplet-based single-cell TCR sequencing of NLGN4X-tetramer-sorted T cells postvaccination. The identified TCR was delivered to Jurkat T cells and primary human T cells (NLGN4X-TCR-T). Functional profiling of NLGN4X-TCR-T was performed by flow cytometry and cytotoxicity assays. Therapeutic efficacy of intracerebroventricular NLGN4X-TCR-T was assessed in NOD scid gamma (NSG) major histocompatibility complex (MHC) I/II knockout (KO) (NSG MHC I/II KO) mice bearing NLGN4X-expressing experimental gliomas. RESULTS: An HLA-A*02-restricted vaccine-induced T cell receptor specifically binding NLGN4X131-139 was applied for preclinical therapeutic use. Reactivity, cytotoxicity, and polyfunctionality of this NLGN4X-specific TCR are demonstrated in various cellular models. Intracerebroventricular administration of NLGN4X-TCR-T prolongs survival and leads to an objective response rate of 44.4% in experimental glioma-bearing NSG MHC I/II KO mice compared to 0.0% in control groups. CONCLUSION: NLGN4X-TCR-T demonstrate efficacy in a preclinical glioblastoma model. On a global scale, we provide the first evidence for the therapeutic retrieval of vaccine-induced human TCRs for the off-the-shelf treatment of glioblastoma patients.Keywords cell therapy | glioblastoma | T cell receptor | tumor antigen.


Assuntos
Vacinas Anticâncer , Glioblastoma , Camundongos , Animais , Humanos , Glioblastoma/genética , Glioblastoma/terapia , Vacinas Anticâncer/uso terapêutico , Vacinas de Subunidades Antigênicas , Receptores de Antígenos de Linfócitos T , Linfócitos T , Antígenos de Neoplasias/genética , Moléculas de Adesão Celular Neuronais
3.
NPJ Breast Cancer ; 9(1): 97, 2023 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-38042915

RESUMO

Intratumoral heterogeneity impacts the success or failure of anti-cancer therapies. Here, we investigated the evolution and mechanistic heterogeneity in clonal populations of cell models for estrogen receptor positive breast cancer. To this end, we established barcoded models of luminal breast cancer and rendered them resistant to commonly applied first line endocrine therapies. By isolating single clones from the resistant cell pools and characterizing replicates of individual clones we observed inter- (between cell lines) and intra-tumor (between different clones from the same cell line) heterogeneity. Molecular characterization at RNA and phospho-proteomic levels revealed private clonal activation of the unfolded protein response and respective sensitivity to inhibition of the proteasome, and potentially shared sensitivities for repression of protein kinase C. Our in vitro findings are consistent with tumor-heterogeneity that is observed in breast cancer patients thus highlighting the need to uncover heterogeneity at an individual patient level and to adjust therapies accordingly.

4.
Acta Neuropathol Commun ; 11(1): 177, 2023 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-37936247

RESUMO

Epithelial membrane protein 3 (EMP3) is an N-glycosylated tetraspanin with a putative trafficking function. It is highly expressed in isocitrate dehydrogenase-wild-type glioblastoma (IDH-wt GBM), and its high expression correlates with poor survival. However, the exact trafficking role of EMP3 and how it promotes oncogenic signaling in GBM remain unclear. Here, we show that EMP3 promotes EGFR/CDK2 signaling by regulating the trafficking and enhancing the stability of EGFR. BioID2-based proximity labeling revealed that EMP3 interacts with endocytic proteins involved in the vesicular transport of EGFR. EMP3 knockout (KO) enhances epidermal growth factor (EGF)-induced shuttling of EGFR into RAB7 + late endosomes, thereby promoting EGFR degradation. Increased EGFR degradation is rescued by the RAB7 negative regulator and novel EMP3 interactor TBC1D5. Phosphoproteomic and transcriptomic analyses further showed that EMP3 KO converges into the inhibition of the cyclin-dependent kinase CDK2 and the repression of EGFR-dependent and cell cycle transcriptional programs. Phenotypically, EMP3 KO cells exhibit reduced proliferation rates, blunted mitogenic response to EGF, and increased sensitivity to the pan-kinase inhibitor staurosporine and the EGFR inhibitor osimertinib. Furthermore, EGFR-dependent patient-derived glioblastoma stem cells display a transcriptomic signature consistent with reduced CDK2 activity, as well as increased susceptibility to CDK2 inhibition upon EMP3 knockdown. Lastly, using TCGA data, we showed that GBM tumors with high EMP3 expression have increased total and phosphorylated EGFR levels. Collectively, our findings demonstrate a novel EMP3-dependent mechanism by which EGFR/CDK2 activity is sustained in GBM. Consequently, EMP3's stabilizing effect provides an additional layer of tumor cell resistance against targeted kinase inhibition.


Assuntos
Fator de Crescimento Epidérmico , Glioblastoma , Humanos , Fator de Crescimento Epidérmico/farmacologia , Glioblastoma/patologia , Transdução de Sinais , Receptores ErbB/metabolismo , Proliferação de Células , Linhagem Celular Tumoral , Quinase 2 Dependente de Ciclina/metabolismo , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Proteínas Ativadoras de GTPase
5.
Cancers (Basel) ; 15(17)2023 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-37686698

RESUMO

Hyper-angiogenesis is a typical feature of glioblastoma (GBM), the most aggressive brain tumor. We have reported the expression of aldehyde dehydrogenase 1A3 (ALDH1A3) in proliferating vasculature in GBM patients. We hypothesized that ALDH1A3 may act as an angiogenesis promoter in GBM. Two GBM cell lines were lentivirally transduced with either ALDH1A3 (ox) or an empty vector (ev). The angiogenesis phenotype was studied in indirect and direct co-culture of endothelial cells (ECs) with oxGBM cells (oxGBMs) and in an angiogenesis model in vivo. Angiogenesis array was performed in oxGBMs. RT2-PCR, Western blot, and double-immunofluorescence staining were performed to confirm the expression of targets identified from the array. A significantly activated angiogenesis phenotype was observed in ECs indirectly and directly co-cultured with oxGBMs and in vivo. Overexpression of ALDH1A3 (oxALDH1A3) led to a marked upregulation of PAI-1 and IL-8 mRNA and protein and a consequential increased release of both proteins. Moreover, oxALDH1A3-induced angiogenesis was abolished by the treatment of the specific inhibitors, respectively, of PAI-1 and IL-8 receptors, CXCR1/2. This study defined ALDH1A3 as a novel angiogenesis promoter. oxALDH1A3 in GBM cells stimulated EC angiogenesis via paracrine upregulation of PAI-1 and IL-8, suggesting ALDH1A3-PAI-1/IL-8 as a novel signaling for future anti-angiogenesis therapy in GBM.

6.
Clin Transl Med ; 13(2): e1186, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36718025

RESUMO

BACKGROUND: The regulatory functions of microRNAs (miRNAs) in anti-tumour immunity have been mainly described in immune effector cells. Since little is known about miRNA effects on the susceptibility of target cells during T cell-target cell interaction, this study focused on the identification of miRNAs expressed in tumour cells controlling their susceptibility to CD8+ T cell-mediated cytotoxicity. METHODS: Luciferase expressing B16F10 melanoma (B16F10 Luci+ ) cells transfected with individual miRNAs covering a comprehensive murine miRNA library were screened for their susceptibility to lysis by an established cytotoxic T lymphocyte (CTL) line (5a, clone Nß) specific for the melanoma-associated antigen tyrosinase-related protein 2. miRNAs with the most pronounced effects on T cell-mediated lysis were validated and stably expressed in B16F10 cells. In silico analyses identified common targets of miRNA sets determined by the screen, which were further confirmed by small interfering RNA (siRNA)-mediated silencing experiments modulating immune surveillance. The Ingenuity Pathway Analysis (IPA) software and RNA sequencing (RNA-seq) data from miRNA-overexpressing cell lines were applied to investigate the underlying mechanisms. The Cancer Genome Atlas (TCGA)-derived miRNA sequencing data were used to assess the correlation of miRNA expression with melanoma patients' survival. RESULTS: The miRNA screen resulted in the selection of seven miRNAs enhancing CTL-mediated melanoma cell killing in vitro. Upon stable overexpression of selected miRNAs, hsa-miR-320a-3p, mmu-miR-7037-5p and mmu-miR-666-3p were determined as most effective in enhancing susceptibility to CTL lysis. In silico analyses and subsequent siRNA-mediated silencing experiments identified Psmc3 and Ndufa1 as common miRNA targets possibly involved in the functional effects observed. The analyses of RNA-seq data with IPA showed pathways, networks, biological functions and key molecules potentially involved in the miRNA-mediated functional effects. Finally, based on TCGA data analysis, a positive correlation of the conserved miRNAs among the panel of the seven identified miRNAs with overall survival of melanoma patients was determined. CONCLUSIONS: For the first time, this study uncovered miRNA species that affect the susceptibility of melanoma cells to T cell-mediated killing. These miRNAs might represent attractive candidates for novel therapy approaches against melanoma and other tumour entities.


Assuntos
Melanoma , MicroRNAs , Humanos , Animais , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , Melanoma/genética , RNA Interferente Pequeno , Linfócitos T CD8-Positivos/metabolismo
7.
FEBS J ; 290(7): 1907-1919, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36380691

RESUMO

Plakophilin (PKP1) 1 is a member of the arm-repeat family of catenins and acts as a structural component of desmosomes, which are important stabilizers of cell-cell adhesion. Besides this, PKP1 also occurs in a non-junctional, cytoplasmic form contributing to post-transcriptional regulation of gene expression. Moreover, PKP1 is expressed in the prostate epithelium but its expression is frequently downregulated in prostate cancers with a more aggressive phenotype. This observation may imply a tumour-suppressive role of PKP1. We found that, in prostatic adenocarcinomas with PKP1 deficiency, the occurrence of T-cells, B-cells, macrophages and neutrophils were significantly increased. In a PKP1-deficient prostatic cancer cell line expressing IL8, these levels were statistically meaningfully reduced upon PKP1 re-expression. When analysing prostatic PKP1 knockdown cell lines, the mRNA and protein levels of additional cytokines, namely CXCL1 and IL6, were upregulated. The effect was rescued upon re-expression of a PKP1 RNAi-resistant form. The corresponding mRNAs were co-precipitated with cytoplasmic PKP1, indicating that they are components of PKP1-containing mRNA ribonucleoprotein particles. Moreover, the mRNA half-lives of CXCL1, IL8 and IL6 were significantly increased in PKP1-deficient cells, showing that these mRNAs were stabilized by PKP1. In an in vitro migration assay, the higher cytokine concentrations led to higher migration rates of THP1 and PBMC cells. This finding implies that PKP1 loss of expression in vivo correlates with the recruitment of immune cells into the tumour area to set up a tumour-specific environment. One may speculate that this newly established tumour environment has tumour-suppressive characteristics and thereby accelerates tumour progression and metastasis.


Assuntos
Placofilinas , Neoplasias da Próstata , Humanos , Masculino , Citocinas/genética , Citocinas/metabolismo , Interleucina-6/genética , Interleucina-8/genética , Interleucina-8/metabolismo , Leucócitos Mononucleares/metabolismo , Placofilinas/genética , Placofilinas/metabolismo , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , RNA Mensageiro/genética , Regulação para Cima
8.
J Exp Med ; 220(1)2023 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-36269299

RESUMO

Primary tumors and distant site metastases form a bidirectionally communicating system. Yet, the molecular mechanisms of this crosstalk are poorly understood. Here, we identified the proteolytically cleaved fragments of angiopoietin-like 4 (ANGPTL4) as contextually active protumorigenic and antitumorigenic contributors in this communication ecosystem. Preclinical studies in multiple tumor models revealed that the C-terminal fragment (cANGPTL4) promoted tumor growth and metastasis. In contrast, the N-terminal fragment of ANGPTL4 (nANGPTL4) inhibited metastasis and enhanced overall survival in a postsurgical metastasis model by inhibiting WNT signaling and reducing vascularity at the metastatic site. Tracing ANGPTL4 and its fragments in tumor patients detected full-length ANGPTL4 primarily in tumor tissues, whereas nANGPTL4 predominated in systemic circulation and correlated inversely with disease progression. The study highlights the spatial context of the proteolytic cleavage-dependent pro- and antitumorigenic functions of ANGPTL4 and identifies and validates nANGPTL4 as a novel biomarker of tumor progression and antimetastatic therapeutic agent.


Assuntos
Proteína 4 Semelhante a Angiopoietina , Neoplasias , Humanos , Proteína 4 Semelhante a Angiopoietina/farmacologia , Proteína 4 Semelhante a Angiopoietina/uso terapêutico , Angiopoietinas/farmacologia , Angiopoietinas/uso terapêutico , Biomarcadores Tumorais , Neoplasias/diagnóstico , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Fragmentos de Peptídeos/farmacologia , Fragmentos de Peptídeos/uso terapêutico
9.
Cancer Discov ; 12(11): 2666-2683, 2022 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-35895872

RESUMO

Anticancer therapies have been limited by the emergence of mutations and other adaptations. In bacteria, antibiotics activate the SOS response, which mobilizes error-prone factors that allow for continuous replication at the cost of mutagenesis. We investigated whether the treatment of lung cancer with EGFR inhibitors (EGFRi) similarly engages hypermutators. In cycling drug-tolerant persister (DTP) cells and in EGFRi-treated patients presenting residual disease, we observed upregulation of GAS6, whereas ablation of GAS6's receptor, AXL, eradicated resistance. Reciprocally, AXL overexpression enhanced DTP survival and accelerated the emergence of T790M, an EGFR mutation typical to resistant cells. Mechanistically, AXL induces low-fidelity DNA polymerases and activates their organizer, RAD18, by promoting neddylation. Metabolomics uncovered another hypermutator, AXL-driven activation of MYC, and increased purine synthesis that is unbalanced by pyrimidines. Aligning anti-AXL combination treatments with the transition from DTPs to resistant cells cured patient-derived xenografts. Hence, similar to bacteria, tumors tolerate therapy by engaging pharmacologically targetable endogenous mutators. SIGNIFICANCE: EGFR-mutant lung cancers treated with kinase inhibitors often evolve resistance due to secondary mutations. We report that in similarity to the bacterial SOS response stimulated by antibiotics, endogenous mutators are activated in drug-treated cells, and this heralds tolerance. Blocking the process prevented resistance in xenograft models, which offers new treatment strategies. This article is highlighted in the In This Issue feature, p. 2483.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Neoplasias Pulmonares , Proteínas Proto-Oncogênicas , Receptores Proteína Tirosina Quinases , Humanos , Linhagem Celular Tumoral , Replicação do DNA , Proteínas de Ligação a DNA/genética , Resistencia a Medicamentos Antineoplásicos/genética , Receptores ErbB/genética , Neoplasias Pulmonares/genética , Mutação , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas/genética , Receptores Proteína Tirosina Quinases/genética , Ubiquitina-Proteína Ligases/genética , Animais , Receptor Tirosina Quinase Axl
10.
J Exp Clin Cancer Res ; 41(1): 190, 2022 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-35655310

RESUMO

BACKGROUND: MicroRNAs (miRNAs) and isomiRs play important roles in tumorigenesis as essential regulators of gene expression. 5'isomiRs exhibit a shifted seed sequence compared to the canonical miRNA, resulting in different target spectra and thereby extending the phenotypic impact of the respective common pre-miRNA. However, for most miRNAs, expression and function of 5'isomiRs have not been studied in detail yet. Therefore, this study aims to investigate the functions of miRNAs and their 5'isomiRs. METHODS: The expression of 5'isomiRs was assessed in The Cancer Genome Atlas (TCGA) breast cancer patient dataset. Phenotypic effects of miR-183 overexpression in triple-negative breast cancer (TNBC) cell lines were investigated in vitro and in vivo by quantifying migration, proliferation, tumor growth and metastasis. Direct targeting of E2F1 by miR-183-5p|+2 was validated with a 3'UTR luciferase assay and linked to the phenotypes of isomiR overexpression. RESULTS: TCGA breast cancer patient data indicated that three variants of miR-183-5p are highly expressed and upregulated, namely miR-183-5p|0, miR-183-5p|+1 and miR-183-5p|+2. However, TNBC cell lines displayed reduced proliferation and invasion upon overexpression of pre-miR-183. While invasion was reduced individually by all three isomiRs, proliferation and cell cycle progression were specifically inhibited by overexpression of miR-183-5p|+2. Proteomic analysis revealed reduced expression of E2F target genes upon overexpression of this isomiR, which could be attributed to direct targeting of E2F1, specifically by miR-183-5p|+2. Knockdown of E2F1 partially phenocopied the effect of miR-183-5p|+2 overexpression on cell proliferation and cell cycle. Gene set enrichment analysis of TCGA and METABRIC patient data indicated that the activity of E2F strongly correlated with the expression of miR-183-5p, suggesting transcriptional regulation of the miRNA by a factor of the E2F family. Indeed, in vitro, expression of miR-183-5p was regulated by E2F1. Hence, miR-183-5p|+2 directly targeting E2F1 appears to be part of a negative feedback loop potentially fine-tuning its activity. CONCLUSIONS: This study demonstrates that 5'isomiRs originating from the same arm of the same pre-miRNA (i.e. pre-miR-183-5p) may exhibit different functions and thereby collectively contribute to the same phenotype. Here, one of three isomiRs was shown to counteract expression of the pre-miRNA by negatively regulating a transcriptional activator (i.e. E2F1). We speculate that this might be part of a regulatory mechanism to prevent uncontrolled cell proliferation, which is disabled during cancer progression.


Assuntos
MicroRNAs , Neoplasias de Mama Triplo Negativas , Linhagem Celular Tumoral , Fator de Transcrição E2F1/genética , Fator de Transcrição E2F1/metabolismo , Retroalimentação , Humanos , MicroRNAs/metabolismo , Proteômica , Neoplasias de Mama Triplo Negativas/metabolismo
11.
Methods Mol Biol ; 2445: 75-98, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34972987

RESUMO

Autophagy is an intracellular degradation process that maintains the cellular homeostasis and it is regulated in multiple ways, both in health and disease. Assessment of autophagic flux in cells is an important approach for understanding the function of autophagy in biological contexts. Here, we describe a new tool for the qualitative and quantitative determination of autophagic flux using a dual lentiviral reporter system that generates a fusion HiBiT-GFP-LC3B protein suitable for generating stable cell lines.


Assuntos
Autofagia , Proteínas Associadas aos Microtúbulos , Autofagia/genética , Linhagem Celular , Proteínas Associadas aos Microtúbulos/metabolismo
12.
BMC Cancer ; 21(1): 1296, 2021 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-34863149

RESUMO

BACKGROUND: Triple negative breast cancer (TNBC) is the most aggressive subtype of breast cancer (BC). Treatment options for TNBC patients are limited and further insights into disease aetiology are needed to develop better therapeutic approaches. microRNAs' ability to regulate multiple targets could hold a promising discovery approach to pathways relevant for TNBC aggressiveness. Thus, we address the role of miRNAs in controlling three signalling pathways relevant to the biology of TNBC, and their downstream phenotypes. METHODS: To identify miRNAs regulating WNT/ß-catenin, c-Met, and integrin signalling pathways, we performed a high-throughput targeted proteomic approach, investigating the effect of 800 miRNAs on the expression of 62 proteins in the MDA-MB-231 TNBC cell line. We then developed a novel network analysis, Pathway Coregulatory (PC) score, to detect miRNAs regulating these three pathways. Using in vitro assays for cell growth, migration, apoptosis, and stem-cell content, we validated the function of candidate miRNAs. Bioinformatic analyses using BC patients' datasets were employed to assess expression of miRNAs as well as their pathological relevance in TNBC patients. RESULTS: We identified six candidate miRNAs coordinately regulating the three signalling pathways. Quantifying cell growth of three TNBC cell lines upon miRNA gain-of-function experiments, we characterised miR-193b as a strong and consistent repressor of proliferation. Importantly, the effects of miR-193b were stronger than chemical inhibition of the individual pathways. We further demonstrated that miR-193b induced apoptosis, repressed migration, and regulated stem-cell markers in MDA-MB-231 cells. Furthermore, miR-193b expression was the lowest in patients classified as TNBC or Basal compared to other subtypes. Gene Set Enrichment Analysis showed that miR-193b expression was significantly associated with reduced activity of WNT/ß-catenin and c-Met signalling pathways in TNBC patients. CONCLUSIONS: Integrating miRNA-mediated effects and protein functions on networks, we show that miRNAs predominantly act in a coordinated fashion to activate or repress connected signalling pathways responsible for metastatic traits in TNBC. We further demonstrate that our top candidate, miR-193b, regulates these phenotypes to an extent stronger than individual pathway inhibition, thus emphasizing that its effect on TNBC aggressiveness is mediated by the coordinated repression of these functionally interconnected pathways.


Assuntos
MicroRNAs/metabolismo , Proteínas Proto-Oncogênicas c-met/metabolismo , Neoplasias de Mama Triplo Negativas/genética , Via de Sinalização Wnt/genética , beta Catenina/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Humanos , Metástase Neoplásica , Transfecção
13.
JACC Basic Transl Sci ; 6(4): 365-380, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33997522

RESUMO

Autophagy is a cellular degradation process that has been implicated in diverse disease processes. The authors provide evidence that FYCO1, a component of the autophagic machinery, is essential for adaptation to cardiac stress. Although the absence of FYCO1 does not affect basal autophagy in isolated cardiomyocytes, it abolishes induction of autophagy after glucose deprivation. Likewise, Fyco1-deficient mice subjected to starvation or pressure overload are unable to respond with induction of autophagy and develop impaired cardiac function. FYCO1 overexpression leads to induction of autophagy in isolated cardiomyocytes and transgenic mouse hearts, thereby rescuing cardiac dysfunction in response to biomechanical stress.

14.
Am J Pathol ; 191(4): 602-617, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33497701

RESUMO

Solitary fibrous tumors (SFTs) harbor recurrent NAB2-STAT6 gene fusions, promoting constitutional up-regulation of oncogenic early growth response 1 (EGR1)-dependent gene expression. SFTs with the most common canonical NAB2 exon 4-STAT6 exon 2 fusion variant are often located in the thorax (pleuropulmonary) and are less cellular with abundant collagen. In contrast, SFTs with NAB2 exon 6-STAT6 exon 16/17 fusion variants typically display a cellular round to ovoid cell morphology and are often located in the deep soft tissue of the retroperitoneum and intra-abdominal pelvic region or in the meninges. Here, we employed next-generation sequencing-based gene expression profiling to identify significant differences in gene expression associated with anatomic localization and NAB2-STAT6 gene fusion variants. SFTs with the NAB2 exon 4-STAT6 exon 2 fusion variant showed a transcriptional signature enriched for genes involved in DNA binding, gene transcription, and nuclear localization, whereas SFTs with the NAB2 exon 6-STAT6 exon 16/17 fusion variants were enriched for genes involved in tyrosine kinase signaling, cell proliferation, and cytoplasmic localization. Specific transcription factor binding motifs were enriched among differentially expressed genes in SFTs with different fusion variants, implicating co-transcription factors in the modification of chimeric NGFI-A binding protein 2 (NAB2)-STAT6-dependent deregulation of EGR1-dependent gene expression. In summary, this study establishes a potential molecular biologic basis for clinicopathologic differences in SFTs with distinct NAB2-STAT6 gene fusion variants.


Assuntos
Biomarcadores Tumorais/genética , Proteínas Repressoras/genética , Fator de Transcrição STAT6/genética , Tumores Fibrosos Solitários/genética , Éxons/genética , Feminino , Expressão Gênica/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Masculino , Proteínas de Fusão Oncogênica/genética , Proteínas Repressoras/metabolismo , Tumores Fibrosos Solitários/patologia
15.
Mol Oncol ; 15(5): 1308-1329, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33476079

RESUMO

Chemotherapy (CTX) remains the standard of care for most aggressive tumours, including breast cancer (BC). In BC chemotherapeutic regimens, the maximum tolerated dose of cytotoxic drugs is administered at regular intervals, and cancer cells can re-grow or adapt during the resting periods between cycles. The impact of the tumour microenvironment on the fate of cancer cells after CTX remains poorly understood. Here, we show that paracrine signalling from CTX-treated cancer cells to stromal fibroblasts can drive cancer cell recovery after cytotoxic drug withdrawal. Interferon ß1 (IFNß1) secreted by cancer cells following treatment with high doses of CTX instigates the acquisition of an anti-viral state in stromal fibroblasts. This state is associated with an expression pattern here referred to as interferon signature (IFNS), which encompasses several interferon-stimulated genes (ISGs), including numerous pro-inflammatory cytokine genes. This crosstalk is an important driver of the expansion of BC cells after CTX, and IFNß1 blockade in tumour cells abrogated their fibroblast-dependent recovery potential. Analysis of human breast carcinomas supported a link between CTX-induced IFNS in tumour stroma and poor response to CTX treatment. First, IFNß1 expression in human breast carcinomas was found to inversely correlate with recurrence free survival (RFS). Second, using laser capture microdissection data sets, we show a higher expression of IFNS in the stromal tumour compartment compared to the epithelial one and this signature was found to be more prominent in more aggressive subtypes of BC (basal-like), pointing to a pro-tumorigenic role of this signature. Moreover, IFNS was associated with higher recurrence rates and a worse outcome in BC patients. Our study unravels a novel form of paracrine communication between cancer cells and fibroblasts that ultimately results in CTX resistance. Targeting this axis has the potential to improve CTX outcomes in patients with BC.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Fibroblastos/efeitos dos fármacos , Interferon beta/metabolismo , Interferon beta/farmacologia , Recidiva Local de Neoplasia/etiologia , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Técnicas de Cocultura , Feminino , Fibroblastos/metabolismo , Fibroblastos/patologia , Células HEK293 , Humanos , Células MCF-7 , Recidiva Local de Neoplasia/induzido quimicamente , Recidiva Local de Neoplasia/metabolismo , Comunicação Parácrina/efeitos dos fármacos , Comunicação Parácrina/fisiologia , Células Estromais/efeitos dos fármacos , Células Estromais/metabolismo , Células Estromais/patologia , Microambiente Tumoral/efeitos dos fármacos
16.
Sci Rep ; 10(1): 21517, 2020 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-33299018

RESUMO

While for photon radiation hypofractionation has been reported to induce enhanced immunomodulatory effects, little is known about the immunomodulatory potential of carbon ion radiotherapy (CIRT). We thus compared the radio-immunogenic effects of photon and carbon ion irradiation on two murine cancer cell lines of different tumor entities. We first calculated the biological equivalent doses of carbon ions corresponding to photon doses of 1, 3, 5, and 10 Gy of the murine breast cancer cell line EO771 and the OVA-expressing pancreatic cancer cell line PDA30364/OVA by clonogenic survival assays. We compared the potential of photon and carbon ion radiation to induce cell cycle arrest, altered surface expression of immunomodulatory molecules and changes in the susceptibility of cancer cells to cytotoxic T cell (CTL) mediated killing. Irradiation induced a dose-dependent G2/M arrest in both cell lines irrespective from the irradiation source applied. Likewise, surface expression of the immunomodulatory molecules PD-L1, CD73, H2-Db and H2-Kb was increased in a dose-dependent manner. Both radiation modalities enhanced the susceptibility of tumor cells to CTL lysis, which was more pronounced in EO771/Luci/OVA cells than in PDA30364/OVA cells. Overall, compared to photon radiation, the effects of carbon ion radiation appeared to be enhanced at higher dose range for EO771 cells and extenuated at lower dose range for PDA30364/OVA cells. Our data show for the first time that equivalent doses of carbon ion and photon irradiation exert similar immunomodulating effects on the cell lines of both tumor entities, highlighted by an enhanced susceptibility to CTL mediated cytolysis in vitro.


Assuntos
Radioterapia com Íons Pesados/métodos , Imunomodulação/efeitos da radiação , Fótons/uso terapêutico , Animais , Apoptose/efeitos dos fármacos , Carbono/farmacologia , Pontos de Checagem do Ciclo Celular/efeitos da radiação , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos da radiação , Relação Dose-Resposta à Radiação , Humanos , Camundongos , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas
17.
Cancers (Basel) ; 12(10)2020 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-33050633

RESUMO

Breast cancer is one of the leading causes of death for women worldwide. Patients whose tumors express Estrogen Receptor α account for around 70% of cases and are mostly treated with targeted endocrine therapy. However, depending on the degree of severity of the disease at diagnosis, 10 to 40% of these tumors eventually relapse due to resistance development. Even though recent novel approaches as the combination with CDK4/6 inhibitors increased the overall survival of relapsing patients, this remains relatively short and there is a urgent need to find alternative targetable pathways. In this study we profiled the early phases of the resistance development process to uncover drivers of this phenomenon. Time-resolved analysis revealed that ATF3, a member of the ATF/CREB family of transcription factors, acts as a novel regulator of the response to therapy via rewiring of central signaling processes towards the adaptation to endocrine treatment. ATF3 was found to be essential in controlling crucial processes such as proliferation, cell cycle, and apoptosis during the early response to treatment through the regulation of MAPK/AKT signaling pathways. Its essential role was confirmed in vivo in a mouse model, and elevated expression of ATF3 was verified in patient datasets, adding clinical relevance to our findings. This study proposes ATF3 as a novel mediator of endocrine resistance development in breast cancer and elucidates its role in the regulation of downstream pathways activities.

18.
J Dermatol Sci ; 97(1): 57-65, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31883833

RESUMO

BACKGROUND: Chemokine ligand-20 (CCL20) expressed in the epidermis is a potent impetus for the recruitment of CC-chemokine receptor 6 (CCR6)-expressing subsets of DCs, B-cells and memory T-cells into the skin. CCL20 and CCR6+ immune cells have been detected in chronic inflammatory skin diseases and several malignancies, including melanoma. Yet, the functional contribution of the CCR6/CCL20 axis for melanoma progression remains controversial. OBJECTIVE: The functional contribution of CCR6-expressing immune cell subsets and local CCL20 in the tumor microenvironment for the immune control of melanoma was studied. METHODS: Homeostatic and inducible CCL20 secretion of murine (B16, Ret) and human (A375, C32) melanoma cells was analyzed by ELISA. To assess the functional relevance of CCR6/CCL20 interactions on local tumor progression, prestimulated or retrovirally transduced B16/F1 melanoma cells overexpressing CCL20 (B16-CCL20) were injected subcutaneously into C57BL/6 Wt mice and congenic CCR6-deficient (CCR6-/-) mice. Infiltrating leucocytes were examined by flow cytometry in tumors and draining lymph nodes (DLNs). RESULTS: Melanoma cell lines up-regulate CCL20 secretion upon stimulation with pro-inflammatory cytokines in vitro. While only moderate changes in phenotype and composition of leucocytes were detected in advanced tumors and DLNs, mice injected with CCR6+ B16-CCL20 cells developed smaller tumors compared to B16-Control injected littermates, with CCR6-/- mice displaying the most pronounced reduction in tumor growth and incidence. CONCLUSION: Our results suggest that CCR6/CCL20 interactions and individual independent effects of CCL20 and CCR6 in the microenvironment may be essential for melanoma progression and suggest a decisive role of this chemokine axis for melanoma pathogenesis beyond chemoattraction.


Assuntos
Quimiocina CCL20/metabolismo , Melanoma Experimental/imunologia , Transdução de Sinais/imunologia , Neoplasias Cutâneas/imunologia , Animais , Linhagem Celular Tumoral , Progressão da Doença , Humanos , Linfócitos do Interstício Tumoral , Melanoma Experimental/patologia , Camundongos , Camundongos Knockout , Receptores CCR6/genética , Receptores CCR6/metabolismo , Pele/citologia , Pele/imunologia , Pele/patologia , Neoplasias Cutâneas/patologia , Microambiente Tumoral/imunologia
19.
Nat Commun ; 10(1): 368, 2019 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-30664630

RESUMO

The molecular pathogenesis of salivary gland acinic cell carcinoma (AciCC) is poorly understood. The secretory Ca-binding phosphoprotein (SCPP) gene cluster at 4q13 encodes structurally related phosphoproteins of which some are specifically expressed at high levels in the salivary glands and constitute major components of saliva. Here we report on recurrent rearrangements [t(4;9)(q13;q31)] in AciCC that translocate active enhancer regions from the SCPP gene cluster to the region upstream of Nuclear Receptor Subfamily 4 Group A Member 3 (NR4A3) at 9q31. We show that NR4A3 is specifically upregulated in AciCCs, and that active chromatin regions and gene expression signatures in AciCCs are highly correlated with the NR4A3 transcription factor binding motif. Overexpression of NR4A3 in mouse salivary gland cells increases expression of known NR4A3 target genes and has a stimulatory functional effect on cell proliferation. We conclude that NR4A3 is upregulated through enhancer hijacking and has important oncogenic functions in AciCC.


Assuntos
Carcinoma de Células Acinares/genética , Proteínas de Ligação a DNA/genética , Elementos Facilitadores Genéticos , Regulação Neoplásica da Expressão Gênica , Receptores de Esteroides/genética , Receptores dos Hormônios Tireóideos/genética , Neoplasias das Glândulas Salivares/genética , Proteínas e Peptídeos Salivares/genética , Translocação Genética , Células Acinares/metabolismo , Células Acinares/patologia , Animais , Carcinoma de Células Acinares/metabolismo , Carcinoma de Células Acinares/patologia , Proliferação de Células , Cromatina/química , Cromatina/metabolismo , Cromossomos Humanos Par 4/química , Cromossomos Humanos Par 4/metabolismo , Cromossomos Humanos Par 9/química , Cromossomos Humanos Par 9/metabolismo , Estudos de Coortes , Proteínas de Ligação a DNA/metabolismo , Epigênese Genética , Feminino , Loci Gênicos , Humanos , Masculino , Camundongos , Família Multigênica , Cultura Primária de Células , Receptores de Esteroides/metabolismo , Receptores dos Hormônios Tireóideos/metabolismo , Neoplasias das Glândulas Salivares/metabolismo , Neoplasias das Glândulas Salivares/patologia , Glândulas Salivares/metabolismo , Glândulas Salivares/patologia , Proteínas e Peptídeos Salivares/metabolismo
20.
Oncoimmunology ; 7(12): e1500671, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30524892

RESUMO

Mutated proteins arising from somatic mutations in tumors are promising targets for cancer immunotherapy. They represent true tumor-specific antigens (TSAs) as they are exclusively expressed in tumors, reduce the risk of autoimmunity and are more likely to overcome tolerance compared to wild-type (wt) sequences. Hence, we designed a panel of long peptides (LPs, 28-35 aa) comprising driver gene mutations in TP35 and KRAS frequently found in gastrointestinal tumors to test their combined immunotherapeutic potential. We found increased numbers of T cells responsive against respective mutated and wt peptides in colorectal cancer patients that carry the tested mutations in their tumors than patients with other mutations. Further, active immunization of HLA(-A2/DR1)-humanized mice with mixes of the same mutated LPs yielded simultaneous, polyvalent CD8+/CD4+ T cell responses against the majority of peptides. Peptide-specific T cells possessed a multifunctional cytokine profile with CD4+ T cells showing a TH1-like phenotype. Two mutated peptides (Kras[G12V], p53[R248W]) induced significantly higher T cell responses than corresponding wt sequences and comprised HLA-A2/DR1-restricted mutated epitopes. However, vaccination with the same highly immunogenic LPs strongly increased systemic regulatory T cells (Treg) numbers in a syngeneic sarcoma model over-expressing these mutated protein variants and resulted in accelerated tumor outgrowth. In contrast, tumor outgrowth was delayed when vaccination was directed against tumor-intrinsic Kras/Tp53 mutations of lower immunogenicity. Conclusively, we show that LP vaccination targeting multiple mutated TSAs elicits polyvalent, multifunctional, and mutation-specific effector T cells capable of targeting tumors. However, the success of this therapeutic approach can be hampered by vaccination-induced, TSA-specific Tregs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...