Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nature ; 618(7964): 349-357, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37258678

RESUMO

The incidence of Alzheimer's disease (AD), the leading cause of dementia, increases rapidly with age, but why age constitutes the main risk factor is still poorly understood. Brain ageing affects oligodendrocytes and the structural integrity of myelin sheaths1, the latter of which is associated with secondary neuroinflammation2,3. As oligodendrocytes support axonal energy metabolism and neuronal health4-7, we hypothesized that loss of myelin integrity could be an upstream risk factor for neuronal amyloid-ß (Aß) deposition, the central neuropathological hallmark of AD. Here we identify genetic pathways of myelin dysfunction and demyelinating injuries as potent drivers of amyloid deposition in mouse models of AD. Mechanistically, myelin dysfunction causes the accumulation of the Aß-producing machinery within axonal swellings and increases the cleavage of cortical amyloid precursor protein. Suprisingly, AD mice with dysfunctional myelin lack plaque-corralling microglia despite an overall increase in their numbers. Bulk and single-cell transcriptomics of AD mouse models with myelin defects show that there is a concomitant induction of highly similar but distinct disease-associated microglia signatures specific to myelin damage and amyloid plaques, respectively. Despite successful induction, amyloid disease-associated microglia (DAM) that usually clear amyloid plaques are apparently distracted to nearby myelin damage. Our data suggest a working model whereby age-dependent structural defects of myelin promote Aß plaque formation directly and indirectly and are therefore an upstream AD risk factor. Improving oligodendrocyte health and myelin integrity could be a promising target to delay development and slow progression of AD.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Bainha de Mielina , Placa Amiloide , Animais , Camundongos , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Modelos Animais de Doenças , Bainha de Mielina/metabolismo , Bainha de Mielina/patologia , Placa Amiloide/genética , Placa Amiloide/metabolismo , Placa Amiloide/patologia , Axônios/metabolismo , Axônios/patologia , Microglia/metabolismo , Microglia/patologia , Análise da Expressão Gênica de Célula Única , Fatores de Risco , Progressão da Doença
2.
FASEB J ; 37(3): e22752, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36794636

RESUMO

Atherosclerosis is a chronic inflammatory condition of our arteries and the main underlying pathology of myocardial infarction and stroke. The pathogenesis is age-dependent, but the links between disease progression, age, and atherogenic cytokines and chemokines are incompletely understood. Here, we studied the chemokine-like inflammatory cytokine macrophage migration inhibitory factor (MIF) in atherogenic Apoe-/- mice across different stages of aging and cholesterol-rich high-fat diet (HFD). MIF promotes atherosclerosis by mediating leukocyte recruitment, lesional inflammation, and suppressing atheroprotective B cells. However, links between MIF and advanced atherosclerosis across aging have not been systematically explored. We compared effects of global Mif-gene deficiency in 30-, 42-, and 48-week-old Apoe-/- mice on HFD for 24, 36, or 42 weeks, respectively, and in 52-week-old mice on a 6-week HFD. Mif-deficient mice exhibited reduced atherosclerotic lesions in the 30/24- and 42/36-week-old groups, but atheroprotection, which in the applied Apoe-/- model was limited to lesions in the brachiocephalic artery and abdominal aorta, was not detected in the 48/42- and 52/6-week-old groups. This suggested that atheroprotection afforded by global Mif-gene deletion differs across aging stages and atherogenic diet duration. To characterize this phenotype and study the underlying mechanisms, we determined immune cells in the periphery and vascular lesions, obtained a multiplex cytokine/chemokine profile, and compared the transcriptome between the age-related phenotypes. We found that Mif deficiency promotes lesional macrophage and T-cell counts in younger but not aged mice, with subgroup analysis pointing toward a role for Trem2+ macrophages. The transcriptomic analysis identified pronounced MIF- and aging-dependent changes in pathways predominantly related to lipid synthesis and metabolism, lipid storage, and brown fat cell differentiation, as well as immunity, and atherosclerosis-relevant enriched genes such as Plin1, Ldlr, Cpne7, or Il34, hinting toward effects on lesional lipids, foamy macrophages, and immune cells. Moreover, Mif-deficient aged mice exhibited a distinct plasma cytokine/chemokine signature consistent with the notion that mediators known to drive inflamm'aging are either not downregulated or even upregulated in Mif-deficient aged mice compared with the corresponding younger ones. Lastly, Mif deficiency favored formation of lymphocyte-rich peri-adventitial leukocyte clusters. While the causative contributions of these mechanistic pillars and their interplay will be subject to future scrutiny, our study suggests that atheroprotection due to global Mif-gene deficiency in atherogenic Apoe-/- mice is reduced upon advanced aging and identifies previously unrecognized cellular and molecular targets that could explain this phenotype shift. These observations enhance our understanding of inflamm'aging and MIF pathways in atherosclerosis and may have implications for translational MIF-directed strategies.


Assuntos
Aterosclerose , Fatores Inibidores da Migração de Macrófagos , Placa Aterosclerótica , Animais , Camundongos , Fatores Inibidores da Migração de Macrófagos/genética , Fatores Inibidores da Migração de Macrófagos/metabolismo , Aterosclerose/metabolismo , Quimiocinas , Envelhecimento , Apolipoproteínas E/metabolismo , Camundongos Knockout , Camundongos Endogâmicos C57BL , Glicoproteínas de Membrana , Receptores Imunológicos
3.
Aging Cell ; 22(3): e13778, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36704841

RESUMO

N-methyl-D-aspartate receptors (NMDARs) are critical for the maturation and plasticity of glutamatergic synapses. In the hippocampus, NMDARs mainly contain GluN2A and/or GluN2B regulatory subunits. The amyloid precursor protein (APP) has emerged as a putative regulator of NMDARs, but the impact of this interaction to their function is largely unknown. By combining patch-clamp electrophysiology and molecular approaches, we unravel a dual mechanism by which APP controls GluN2B-NMDARs, depending on the life stage. We show that APP is highly abundant specifically at the postnatal postsynapse. It interacts with GluN2B-NMDARs, controlling its synaptic content and mediated currents, both in infant mice and primary neuronal cultures. Upon aging, the APP amyloidogenic-derived C-terminal fragments, rather than APP full-length, contribute to aberrant GluN2B-NMDAR currents. Accordingly, we found that the APP processing is increased upon aging, both in mice and human brain. Interfering with stability or production of the APP intracellular domain normalized the GluN2B-NMDARs currents. While the first mechanism might be essential for synaptic maturation during development, the latter could contribute to age-related synaptic impairments.


Assuntos
Precursor de Proteína beta-Amiloide , Receptores de N-Metil-D-Aspartato , Camundongos , Humanos , Animais , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Transdução de Sinais , Hipocampo/metabolismo , Sinapses/metabolismo
4.
Brain ; 145(10): 3558-3570, 2022 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-36270003

RESUMO

Alzheimer's disease is neuropathologically characterized by the deposition of the amyloid ß-peptide (Aß) as amyloid plaques. Aß plaque pathology starts in the neocortex before it propagates into further brain regions. Moreover, Aß aggregates undergo maturation indicated by the occurrence of post-translational modifications. Here, we show that propagation of Aß plaques is led by presumably non-modified Aß followed by Aß aggregate maturation. This sequence was seen neuropathologically in human brains and in amyloid precursor protein transgenic mice receiving intracerebral injections of human brain homogenates from cases varying in Aß phase, Aß load and Aß maturation stage. The speed of propagation after seeding in mice was best related to the Aß phase of the donor, the progression speed of maturation to the stage of Aß aggregate maturation. Thus, different forms of Aß can trigger propagation/maturation of Aß aggregates, which may explain the lack of success when therapeutically targeting only specific forms of Aß.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Animais , Humanos , Camundongos , Peptídeos beta-Amiloides/metabolismo , Doença de Alzheimer/patologia , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Placa Amiloide/metabolismo , Camundongos Transgênicos , Encéfalo/patologia , Modelos Animais de Doenças
5.
Mol Neurodegener ; 17(1): 41, 2022 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-35690868

RESUMO

BACKGROUND: Genetic mutations underlying familial Alzheimer's disease (AD) were identified decades ago, but the field is still in search of transformative therapies for patients. While mouse models based on overexpression of mutated transgenes have yielded key insights in mechanisms of disease, those models are subject to artifacts, including random genetic integration of the transgene, ectopic expression and non-physiological protein levels. The genetic engineering of novel mouse models using knock-in approaches addresses some of those limitations. With mounting evidence of the role played by microglia in AD, high-dimensional approaches to phenotype microglia in those models are critical to refine our understanding of the immune response in the brain. METHODS: We engineered a novel App knock-in mouse model (AppSAA) using homologous recombination to introduce three disease-causing coding mutations (Swedish, Arctic and Austrian) to the mouse App gene. Amyloid-ß pathology, neurodegeneration, glial responses, brain metabolism and behavioral phenotypes were characterized in heterozygous and homozygous AppSAA mice at different ages in brain and/ or biofluids. Wild type littermate mice were used as experimental controls. We used in situ imaging technologies to define the whole-brain distribution of amyloid plaques and compare it to other AD mouse models and human brain pathology. To further explore the microglial response to AD relevant pathology, we isolated microglia with fibrillar Aß content from the brain and performed transcriptomics and metabolomics analyses and in vivo brain imaging to measure energy metabolism and microglial response. Finally, we also characterized the mice in various behavioral assays. RESULTS: Leveraging multi-omics approaches, we discovered profound alteration of diverse lipids and metabolites as well as an exacerbated disease-associated transcriptomic response in microglia with high intracellular Aß content. The AppSAA knock-in mouse model recapitulates key pathological features of AD such as a progressive accumulation of parenchymal amyloid plaques and vascular amyloid deposits, altered astroglial and microglial responses and elevation of CSF markers of neurodegeneration. Those observations were associated with increased TSPO and FDG-PET brain signals and a hyperactivity phenotype as the animals aged. DISCUSSION: Our findings demonstrate that fibrillar Aß in microglia is associated with lipid dyshomeostasis consistent with lysosomal dysfunction and foam cell phenotypes as well as profound immuno-metabolic perturbations, opening new avenues to further investigate metabolic pathways at play in microglia responding to AD-relevant pathogenesis. The in-depth characterization of pathological hallmarks of AD in this novel and open-access mouse model should serve as a resource for the scientific community to investigate disease-relevant biology.


Assuntos
Doença de Alzheimer , Precursor de Proteína beta-Amiloide , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Amiloidose/metabolismo , Animais , Encéfalo/metabolismo , Modelos Animais de Doenças , Camundongos , Camundongos Transgênicos , Microglia/metabolismo , Placa Amiloide/patologia , Receptores de GABA/metabolismo
6.
Front Aging Neurosci ; 14: 854031, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35431893

RESUMO

We undertook longitudinal ß-amyloid positron emission tomography (Aß-PET) imaging as a translational tool for monitoring of chronic treatment with the peroxisome proliferator-activated receptor gamma (PPARγ) agonist pioglitazone in Aß model mice. We thus tested the hypothesis this treatment would rescue from increases of the Aß-PET signal while promoting spatial learning and preservation of synaptic density. Here, we investigated longitudinally for 5 months PS2APP mice (N = 23; baseline age: 8 months) and App NL-G-F mice (N = 37; baseline age: 5 months) using Aß-PET. Groups of mice were treated with pioglitazone or vehicle during the follow-up interval. We tested spatial memory performance and confirmed terminal PET findings by immunohistochemical and biochemistry analyses. Surprisingly, Aß-PET and immunohistochemistry revealed a shift toward higher fibrillary composition of Aß-plaques during upon chronic pioglitazone treatment. Nonetheless, synaptic density and spatial learning were improved in transgenic mice with pioglitazone treatment, in association with the increased plaque fibrillarity. These translational data suggest that a shift toward higher plaque fibrillarity protects cognitive function and brain integrity. Increases in the Aß-PET signal upon immunomodulatory treatments targeting Aß aggregation can thus be protective.

7.
Science ; 375(6577): 147-148, 2022 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-35025652

RESUMO

Structures of amyloid-ß fibrils suggest Alzheimer's disease­modifying strategies.


Assuntos
Peptídeos beta-Amiloides , Humanos
8.
J Nucl Med ; 63(1): 117-124, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34016733

RESUMO

ß-amyloid (Aß) PET is an important tool for quantification of amyloidosis in the brain of suspected Alzheimer disease (AD) patients and transgenic AD mouse models. Despite the excellent correlation of Aß PET with gold standard immunohistochemical assessments, the relative contributions of fibrillar and nonfibrillar Aß components to the in vivo Aß PET signal remain unclear. Thus, we obtained 2 murine cerebral amyloidosis models that present with distinct Aß plaque compositions and performed regression analysis between immunohistochemistry and Aß PET to determine the biochemical contributions to Aß PET signal in vivo. Methods: We investigated groups of AppNL-G-F and APPPS1 mice at 3, 6, and 12 mo of age by longitudinal 18F-florbetaben Aß PET and with immunohistochemical analysis of the fibrillar and total Aß burdens. We then applied group-level intermodality regression models using age- and genotype-matched sets of fibrillar and nonfibrillar Aß data (predictors) and Aß PET results (outcome) for both Aß mouse models. An independent group of double-hit APPPS1 mice with dysfunctional microglia due to knockout of triggering receptor expression on myeloid cells 2 (Trem2-/-) served for validation and evaluation of translational impact. Results: Neither fibrillar nor nonfibrillar Aß content alone sufficed to explain the Aß PET findings in either AD model. However, a regression model compiling fibrillar and nonfibrillar Aß together with the estimate of individual heterogeneity and age at scanning could explain a 93% of variance of the Aß PET signal (P < 0.001). Fibrillar Aß burden had a 16-fold higher contribution to the Aß PET signal than nonfibrillar Aß. However, given the relatively greater abundance of nonfibrillar Aß, we estimate that nonfibrillar Aß produced 79% ± 25% of the net in vivo Aß PET signal in AppNL-G-F mice and 25% ± 12% in APPPS1 mice. Corresponding results in separate groups of APPPS1/Trem2-/- and APPPS1/Trem2+/+ mice validated the calculated regression factors and revealed that the altered fibrillarity due to Trem2 knockout impacts the Aß PET signal. Conclusion: Taken together, the in vivo Aß PET signal derives from the composite of fibrillar and nonfibrillar Aß plaque components. Although fibrillar Aß has inherently higher PET tracer binding, the greater abundance of nonfibrillar Aß plaque in AD-model mice contributes importantly to the PET signal.


Assuntos
Placa Amiloide
9.
Cells ; 12(1)2022 12 24.
Artigo em Inglês | MEDLINE | ID: mdl-36611872

RESUMO

Amyloid-ß (Aß) deposition is an initiating factor in Alzheimer's disease (AD). Microglia are the brain immune cells that surround and phagocytose Aß plaques, but their phagocytic capacity declines in AD. This is in agreement with studies that associate AD risk loci with genes regulating the phagocytic function of immune cells. Immunotherapies are currently pursued as strategies against AD and there are increased efforts to understand the role of the immune system in ameliorating AD pathology. Here, we evaluated the effect of the Aß targeting ACI-24 vaccine in reducing AD pathology in an amyloidosis mouse model. ACI-24 vaccination elicited a robust and sustained antibody response in APPPS1 mice with an accompanying reduction of Aß plaque load, Aß plaque-associated ApoE and dystrophic neurites as compared to non-vaccinated controls. Furthermore, an increased number of NLRP3-positive plaque-associated microglia was observed following ACI-24 vaccination. In contrast to this local microglial activation at Aß plaques, we observed a more ramified morphology of Aß plaque-distant microglia compared to non-vaccinated controls. Accordingly, bulk transcriptomic analysis revealed a trend towards the reduced expression of several disease-associated microglia (DAM) signatures that is in line with the reduced Aß plaque load triggered by ACI-24 vaccination. Our study demonstrates that administration of the Aß targeting vaccine ACI-24 reduces AD pathology, suggesting its use as a safe and cost-effective AD therapeutic intervention.


Assuntos
Doença de Alzheimer , Amiloidose , Camundongos , Animais , Microglia/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Camundongos Transgênicos , Peptídeos beta-Amiloides/metabolismo , Doença de Alzheimer/genética , Doença de Alzheimer/terapia , Doença de Alzheimer/metabolismo , Amiloidose/metabolismo , Placa Amiloide/metabolismo , Fenótipo , Vacinação
10.
Sci Transl Med ; 13(615): eabe5640, 2021 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-34644146

RESUMO

2-Deoxy-2-[18F]fluoro-d-glucose positron emission tomography (FDG-PET) is widely used to study cerebral glucose metabolism. Here, we investigated whether the FDG-PET signal is directly influenced by microglial glucose uptake in mouse models and patients with neurodegenerative diseases. Using a recently developed approach for cell sorting after FDG injection, we found that, at cellular resolution, microglia displayed higher glucose uptake than neurons and astrocytes. Alterations in microglial glucose uptake were responsible for both the FDG-PET signal decrease in Trem2-deficient mice and the FDG-PET signal increase in mouse models for amyloidosis. Thus, opposite microglial activation states determine the differential FDG uptake. Consistently, 12 patients with Alzheimer's disease and 21 patients with four-repeat tauopathies also exhibited a positive association between glucose uptake and microglial activity as determined by 18F-GE-180 18-kDa translocator protein PET (TSPO-PET) in preserved brain regions, indicating that the cerebral glucose uptake in humans is also strongly influenced by microglial activity. Our findings suggest that microglia activation states are responsible for FDG-PET signal alterations in patients with neurodegenerative diseases and mouse models for amyloidosis. Microglial activation states should therefore be considered when performing FDG-PET.


Assuntos
Fluordesoxiglucose F18 , Doenças Neurodegenerativas , Humanos , Glucose , Microglia , Doenças Neurodegenerativas/diagnóstico por imagem , Tomografia por Emissão de Pósitrons , Animais , Camundongos
11.
Theranostics ; 11(18): 8964-8976, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34522221

RESUMO

Modulation of the innate immune system is emerging as a promising therapeutic strategy against Alzheimer's disease (AD). However, determinants of a beneficial therapeutic effect are ill-understood. Thus, we investigated the potential of 18 kDa translocator protein positron-emission-tomography (TSPO-PET) for assessment of microglial activation in mouse brain before and during chronic immunomodulation. Methods: Serial TSPO-PET was performed during five months of chronic microglia modulation by stimulation of the peroxisome proliferator-activated receptor (PPAR)-γ with pioglitazone in two different mouse models of AD (PS2APP, AppNL-G-F ). Using mixed statistical models on longitudinal TSPO-PET data, we tested for effects of therapy and sex on treatment response. We tested correlations of baseline with longitudinal measures of TSPO-PET, and correlations between PET results with spatial learning performance and ß-amyloid accumulation of individual mice. Immunohistochemistry was used to determine the molecular source of the TSPO-PET signal. Results: Pioglitazone-treated female PS2APP and AppNL-G-F mice showed attenuation of the longitudinal increases in TSPO-PET signal when compared to vehicle controls, whereas treated male AppNL-G-F mice showed the opposite effect. Baseline TSPO-PET strongly predicted changes in microglial activation in treated mice (R = -0.874, p < 0.0001) but not in vehicle controls (R = -0.356, p = 0.081). Reduced TSPO-PET signal upon pharmacological treatment was associated with better spatial learning despite higher fibrillar ß-amyloid accumulation. Immunohistochemistry confirmed activated microglia to be the source of the TSPO-PET signal (R = 0.952, p < 0.0001). Conclusion: TSPO-PET represents a sensitive biomarker for monitoring of immunomodulation and closely reflects activated microglia. Sex and pre-therapeutic assessment of baseline microglial activation predict individual immunomodulation effects and may serve for responder stratification.


Assuntos
Doença de Alzheimer/metabolismo , Microglia/metabolismo , Receptores de GABA/metabolismo , Peptídeos beta-Amiloides/metabolismo , Animais , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Modelos Animais de Doenças , Feminino , Imunidade Inata/imunologia , Imunomodulação/imunologia , Imunomodulação/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , PPAR gama/efeitos dos fármacos , PPAR gama/metabolismo , Pioglitazona/farmacologia , Tomografia por Emissão de Pósitrons/métodos , Receptores de GABA/fisiologia , Fatores Sexuais
12.
Alzheimers Res Ther ; 13(1): 125, 2021 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-34238366

RESUMO

BACKGROUND: Amyloid precursor protein (APP) processing is central to Alzheimer's disease (AD) etiology. As early cognitive alterations in AD are strongly correlated to abnormal information processing due to increasing synaptic impairment, it is crucial to characterize how peptides generated through APP cleavage modulate synapse function. We previously described a novel APP processing pathway producing η-secretase-derived peptides (Aη) and revealed that Aη-α, the longest form of Aη produced by η-secretase and α-secretase cleavage, impaired hippocampal long-term potentiation (LTP) ex vivo and neuronal activity in vivo. METHODS: With the intention of going beyond this initial observation, we performed a comprehensive analysis to further characterize the effects of both Aη-α and the shorter Aη-ß peptide on hippocampus function using ex vivo field electrophysiology, in vivo multiphoton calcium imaging, and in vivo electrophysiology. RESULTS: We demonstrate that both synthetic peptides acutely impair LTP at low nanomolar concentrations ex vivo and reveal the N-terminus to be a primary site of activity. We further show that Aη-ß, like Aη-α, inhibits neuronal activity in vivo and provide confirmation of LTP impairment by Aη-α in vivo. CONCLUSIONS: These results provide novel insights into the functional role of the recently discovered η-secretase-derived products and suggest that Aη peptides represent important, pathophysiologically relevant, modulators of hippocampal network activity, with profound implications for APP-targeting therapeutic strategies in AD.


Assuntos
Doença de Alzheimer , Potenciação de Longa Duração , Secretases da Proteína Precursora do Amiloide , Peptídeos beta-Amiloides , Precursor de Proteína beta-Amiloide/genética , Humanos , Neurônios
13.
Front Aging Neurosci ; 13: 668948, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34177555

RESUMO

Age-dependent accumulation of amyloid-ß, provoking increasing brain amyloidopathy, triggers abnormal patterns of neuron activity and circuit synchronization in Alzheimer's disease (AD) as observed in human AD patients and AD mouse models. Recent studies on AD mouse models, mimicking this age-dependent amyloidopathy, identified alterations in CA1 neuron excitability. However, these models generally also overexpress mutated amyloid precursor protein (APP) and presenilin 1 (PS1) and there is a lack of a clear correlation of neuronal excitability alterations with progressive amyloidopathy. The active development of computational models of AD points out the need of collecting such experimental data to build a reliable disease model exhibiting AD-like disease progression. We therefore used the feature extraction tool of the Human Brain Project (HBP) Brain Simulation Platform to systematically analyze the excitability profile of CA1 pyramidal neuron in the APPPS1 mouse model. We identified specific features of neuron excitability that best correlate either with over-expression of mutated APP and PS1 or increasing Aß amyloidopathy. Notably, we report strong alterations in membrane time constant and action potential width and weak alterations in firing behavior. Also, using a CA1 pyramidal neuron model, we evidence amyloidopathy-dependent alterations in I h . Finally, cluster analysis of these recordings showed that we could reliably assign a trace to its correct group, opening the door to a more refined, less variable analysis of AD-affected neurons. This inter-disciplinary analysis, bringing together experimentalists and modelers, helps to further unravel the neuronal mechanisms most affected by AD and to build a biologically plausible computational model of the AD brain.

14.
Neuroimage ; 230: 117707, 2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33385560

RESUMO

BACKGROUND: In Alzheimer`s disease (AD), regional heterogeneity of ß-amyloid burden and microglial activation of individual patients is a well-known phenomenon. Recently, we described a high incidence of inter-individual regional heterogeneity in terms of asymmetry of plaque burden and microglial activation in ß-amyloid mouse models of AD as assessed by positron-emission-tomography (PET). We now investigate the regional associations between amyloid plaque burden, microglial activation, and impaired spatial learning performance in transgenic mice in vivo. METHODS: In 30 AppNL-G-F mice (15 female, 15 male) we acquired cross-sectional 18 kDa translocator protein (TSPO-PET, 18F-GE-180) and ß-amyloid-PET (18F-florbetaben) scans at ten months of age. Control data were obtained from age- and sex-matched C57BI/6 wild-type mice. We assessed spatial learning (i.e. Morris water maze) within two weeks of PET scanning and correlated the principal component of spatial learning performance scores with voxel-wise ß-amyloid and TSPO tracer uptake maps in AppNL-G-F mice, controlled for age and sex. In order to assess the effects of hemispheric asymmetry, we also analyzed correlations of spatial learning performance with tracer uptake in bilateral regions of interest for frontal cortex, entorhinal/piriform cortex, amygdala, and hippocampus, using a regression model. We tested the correlation between regional asymmetry of PET biomarkers with individual spatial learning performance. RESULTS: Voxel-wise analyses in AppNL-G-F mice revealed that higher TSPO-PET signal in the amygdala, entorhinal and piriform cortices, the hippocampus and the hypothalamus correlated with spatial learning performance. Region-based analysis showed significant correlations between TSPO expression in the right entorhinal/piriform cortex and the right amygdala and spatial learning performance, whereas there were no such correlations in the left hemisphere. Right lateralized TSPO expression in the amygdala predicted better performance in the Morris water maze (ß = -0.470, p = 0.013), irrespective of the global microglial activation and amyloid level. Region-based results for amyloid-PET showed no significant associations with spatial learning. CONCLUSION: Elevated microglial activation in the right amygdala-entorhinal-hippocampal complex of AppNL-G-F mice is associated with better spatial learning. Our findings support a protective role of microglia on cognitive function when they highly express TSPO in specific brain regions involved in spatial memory.


Assuntos
Tonsila do Cerebelo/metabolismo , Precursor de Proteína beta-Amiloide/biossíntese , Córtex Entorrinal/metabolismo , Hipocampo/metabolismo , Microglia/metabolismo , Aprendizagem Espacial/fisiologia , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Precursor de Proteína beta-Amiloide/genética , Animais , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Tomografia por Emissão de Pósitrons/métodos , Receptores de GABA/biossíntese , Receptores de GABA/genética
15.
Biol Psychiatry ; 89(8): 745-756, 2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-32223911

RESUMO

BACE1 (beta-site amyloid precursor protein cleaving enzyme 1) was initially cloned and characterized in 1999. It is required for the generation of all monomeric forms of amyloid-ß (Aß), including Aß42, which aggregates into bioactive conformational species and likely initiates toxicity in Alzheimer's disease (AD). BACE1 concentrations and rates of activity are increased in AD brains and body fluids, thereby supporting the hypothesis that BACE1 plays a critical role in AD pathophysiology. Therefore, BACE1 is a prime drug target for slowing down Aß production in early AD. Besides the amyloidogenic pathway, BACE1 has other substrates that may be important for synaptic plasticity and synaptic homeostasis. Indeed, germline and adult conditional BACE1 knockout mice display complex neurological phenotypes. Despite BACE1 inhibitor clinical trials conducted so far being discontinued for futility or safety reasons, BACE1 remains a well-validated therapeutic target for AD. A safe and efficacious compound with high substrate selectivity as well as a more accurate dose regimen, patient population, and disease stage may yet be found. Further research should focus on the role of Aß and BACE1 in physiological processes and key pathophysiological mechanisms of AD. The functions of BACE1 and the homologue BACE2, as well as the biology of Aß in neurons and glia, deserve further investigation. Cellular and molecular studies of BACE1 and BACE2 knockout mice coupled with biomarker-based human research will help elucidate the biological functions of these important enzymes and identify their substrates and downstream effects. Such studies will have critical implications for BACE1 inhibition as a therapeutic approach for AD.


Assuntos
Doença de Alzheimer , Secretases da Proteína Precursora do Amiloide , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/genética , Peptídeos beta-Amiloides , Precursor de Proteína beta-Amiloide , Animais , Ácido Aspártico Endopeptidases/genética , Humanos , Camundongos , Camundongos Knockout
16.
Elife ; 92020 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-32510331

RESUMO

Microglial dysfunction is a key pathological feature of Alzheimer's disease (AD), but little is known about proteome-wide changes in microglia during the course of AD and their functional consequences. Here, we performed an in-depth and time-resolved proteomic characterization of microglia in two mouse models of amyloid ß (Aß) pathology, the overexpression APPPS1 and the knock-in APP-NL-G-F (APP-KI) model. We identified a large panel of Microglial Aß Response Proteins (MARPs) that reflect heterogeneity of microglial alterations during early, middle and advanced stages of Aß deposition and occur earlier in the APPPS1 mice. Strikingly, the kinetic differences in proteomic profiles correlated with the presence of fibrillar Aß, rather than dystrophic neurites, suggesting that fibrillar Aß may trigger the AD-associated microglial phenotype and the observed functional decline. The identified microglial proteomic fingerprints of AD provide a valuable resource for functional studies of novel molecular targets and potential biomarkers for monitoring AD progression or therapeutic efficacy.


Alzheimer's disease is a progressive, irreversible brain disorder. Patients with Alzheimer's have problems with memory and other mental skills, which lead to more severe cognitive decline and, eventually, premature death. This is due to increasing numbers of nerve cells in the brain dying over time. A distinctive feature of Alzheimer's is the abnormally high accumulation of a protein called amyloid-ß, which forms distinctive clumps in the brain termed 'plaques'. The brain has a type of cells called the microglia that identify infections, toxic material and damaged cells, and prevent these from building up by clearing them away. In Alzheimer's disease, however, the microglia do not work properly, which is thought to contribute to the accumulation of amyloid-ß plaques. This means that people with mutations in the genes important for the microglia activity are also at higher risk of developing the disease. Although problems with the microglia play an important role in Alzheimer's, researchers still do not fully understand why microglia stop working in the first place. It is also not known exactly when and how the microglia change as Alzheimer's disease progresses. To unravel this mystery, Sebastian Monasor, Müller et al. carried out a detailed study of the molecular 'fingerprints' of microglia at each key stage of Alzheimer's disease. The experiments used microglia cells from two different strains of genetically altered mice, both of which develop the hallmarks of Alzheimer's disease, including amyloid-ß plaques, at similar rates. Analysis of the proteins in microglia cells from both strains revealed distinctive, large-scale changes corresponding to successive stages of the disease ­ reflecting the gradual accumulation of plaques. Obvious defects in microglia function also appeared soon after plaques started to build up. Microscopy imaging of the brain tissue showed that although amyloid-ß plaques appeared at the same time, they looked different in each mouse strain. In one, plaques were more compact, while in the other, plaques appeared 'fluffier', like cotton wool. In mice with more compacted plaques, microglia recognized the plaques earlier and stopped working sooner, suggesting that plaque structure and microglia defects could be linked. These results shed new light on the role of microglia and their changing protein 'signals' during the different stages of Alzheimer's disease. In the future, this information could help identify people at risk for the disease, so that they can be treated as soon as possible, and to design new therapies to make microglia work again.


Assuntos
Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Microglia/metabolismo , Proteoma/metabolismo , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/genética , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Modelos Animais de Doenças , Feminino , Técnicas de Introdução de Genes , Masculino , Camundongos , Camundongos Transgênicos , Microglia/patologia
17.
J Nucl Med ; 61(12): 1825-1831, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32414948

RESUMO

Asymmetries of amyloid-ß (Aß) burden are well known in Alzheimer disease (AD) but did not receive attention in Aß mouse models of Alzheimer disease. Therefore, we investigated Aß asymmetries in Aß mouse models examined by Aß small-animal PET and tested if such asymmetries have an association with microglial activation. Methods: We analyzed 523 cross-sectional Aß PET scans of 5 different Aß mouse models (APP/PS1, PS2APP, APP-SL70, AppNL-G-F , and APPswe) together with 136 18-kDa translocator protein (TSPO) PET scans for microglial activation. The asymmetry index (AI) was calculated between tracer uptake in both hemispheres. AIs of Aß PET were analyzed in correlation with TSPO PET AIs. Extrapolated required sample sizes were compared between analyses of single and combined hemispheres. Results: Relevant asymmetries of Aß deposition were identified in at least 30% of all investigated mice. There was a significant correlation between AIs of Aß PET and TSPO PET in 4 investigated Aß mouse models (APP/PS1: R = 0.593, P = 0.001; PS2APP: R = 0.485, P = 0.019; APP-SL70: R = 0.410, P = 0.037; AppNL-G-F : R = 0.385, P = 0.002). Asymmetry was associated with higher variance of tracer uptake in single hemispheres, leading to higher required sample sizes. Conclusion: Asymmetry of fibrillar plaque neuropathology occurs frequently in Aß mouse models and acts as a potential confounder in experimental designs. Concomitant asymmetry of microglial activation indicates a neuroinflammatory component to hemispheric predominance of fibrillary amyloidosis.


Assuntos
Peptídeos beta-Amiloides/química , Placa Amiloide/metabolismo , Agregados Proteicos , Animais , Modelos Animais de Doenças , Processamento de Imagem Assistida por Computador , Camundongos , Camundongos Endogâmicos C57BL , Placa Amiloide/diagnóstico por imagem , Tomografia por Emissão de Pósitrons
18.
Mol Neurobiol ; 57(6): 2812-2829, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32367491

RESUMO

The structurally disordered N-terminal half of the prion protein (PrPC) is constitutively released into the extracellular space by an endogenous proteolytic cleavage event. Once liberated, this N1 fragment acts neuroprotective in ischemic conditions and interferes with toxic peptides associated with neurodegenerative diseases, such as amyloid-beta (Aß) in Alzheimer's disease. Since analog protective effects of N1 in prion diseases, such as Creutzfeldt-Jakob disease, have not been studied, and given that the protease releasing N1 has not been identified to date, we have generated and characterized transgenic mice overexpressing N1 (TgN1). Upon intracerebral inoculation of TgN1 mice with prions, no protective effects were observed at the levels of survival, clinical course, neuropathological, or molecular assessment. Likewise, primary neurons of these mice did not show protection against Aß toxicity. Our biochemical and morphological analyses revealed that this lack of protective effects is seemingly due to an impaired ER translocation of the disordered N1 resulting in its cytosolic retention with an uncleaved signal peptide. Thus, TgN1 mice represent the first animal model to prove the inefficient ER translocation of intrinsically disordered domains (IDD). In contrast to earlier studies, our data challenge roles of cytoplasmic N1 as a cell penetrating peptide or as a potent "anti-prion" agent. Lastly, our study highlights both the importance of structured domains in the nascent chain for proteins to be translocated and aspects to be considered when devising novel N1-based therapeutic approaches against neurodegenerative diseases.


Assuntos
Hipocampo/metabolismo , Doenças Neurodegenerativas/genética , Neurônios/metabolismo , Proteínas PrPC/genética , Animais , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Doenças Neurodegenerativas/metabolismo , Proteínas PrPC/metabolismo
19.
EMBO Mol Med ; 12(4): e11227, 2020 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-32154671

RESUMO

Triggering receptor expressed on myeloid cells 2 (TREM2) is essential for the transition of homeostatic microglia to a disease-associated microglial state. To enhance TREM2 activity, we sought to selectively increase the full-length protein on the cell surface via reducing its proteolytic shedding by A Disintegrin And Metalloproteinase (i.e., α-secretase) 10/17. We screened a panel of monoclonal antibodies against TREM2, with the aim to selectively compete for α-secretase-mediated shedding. Monoclonal antibody 4D9, which has a stalk region epitope close to the cleavage site, demonstrated dual mechanisms of action by stabilizing TREM2 on the cell surface and reducing its shedding, and concomitantly activating phospho-SYK signaling. 4D9 stimulated survival of macrophages and increased microglial uptake of myelin debris and amyloid ß-peptide in vitro. In vivo target engagement was demonstrated in cerebrospinal fluid, where nearly all soluble TREM2 was 4D9-bound. Moreover, in a mouse model for Alzheimer's disease-related pathology, 4D9 reduced amyloidogenesis, enhanced microglial TREM2 expression, and reduced a homeostatic marker, suggesting a protective function by driving microglia toward a disease-associated state.


Assuntos
Anticorpos Monoclonais/farmacologia , Glicoproteínas de Membrana/imunologia , Microglia , Mieloma Múltiplo , Receptores Imunológicos/imunologia , Peptídeos beta-Amiloides , Animais , Linhagem Celular Tumoral , Feminino , Macrófagos , Camundongos , Microglia/patologia , Ratos , Ratos Wistar
20.
Neurobiol Aging ; 84: 241.e5-241.e11, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31627977

RESUMO

We report the novel presenilin 1 (PSEN1) single amino acid deletion mutation F175del. Comprehensive clinical work-up, including cerebral MRI, FDG-PET, and CSF analysis, was performed in a male who had developed forgetfulness at the age of 39. Alzheimer's disease dementia was diagnosed according to established criteria. The index patient manifested rapid progressive dementia, seizures, and myoclonus, and a Pisa syndrome as a side effect of donepezil treatment. The PSEN1 mutation F175del was found on genetic testing. It was rendered very likely pathogenic as amyloid-ß (Aß) peptide 42 was elevated in a cell culture model compared to presenilin 1 wild-type controls. An additional, unusual increase in Aß39 indicates a rarely observed product line deviation in the generation of the shorter Aß species. Our observations extend the range of PSEN1 mutations to be considered in familial dementia. We demonstrate that deletion of a single conserved amino acid, which is very rare compared to missense mutations as the common cause for PSEN1-associated Alzheimer's disease, can lead to an unusual profile of Aß species.


Assuntos
Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Mutação , Presenilina-1/genética , Doença de Alzheimer/diagnóstico por imagem , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...