Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioinformatics ; 37(21): 3822-3829, 2021 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-34358315

RESUMO

MOTIVATION: The investigation of quantitative trait loci (QTL) is an essential component in our understanding of how organisms vary phenotypically. However, many important crop species are polyploid (carrying more than two copies of each chromosome), requiring specialized tools for such analyses. Moreover, deciphering meiotic processes at higher ploidy levels is not straightforward, but is necessary to understand the reproductive dynamics of these species, or uncover potential barriers to their genetic improvement. RESULTS: Here, we present polyqtlR, a novel software tool to facilitate such analyses in (auto)polyploid crops. It performs QTL interval mapping in F1 populations of outcrossing polyploids of any ploidy level using identity-by-descent probabilities. The allelic composition of discovered QTL can be explored, enabling favourable alleles to be identified and tracked in the population. Visualization tools within the package facilitate this process, and options to include genetic co-factors and experimental factors are included. Detailed information on polyploid meiosis including prediction of multivalent pairing structures, detection of preferential chromosomal pairing and location of double reduction events can be performed. AVAILABILITYAND IMPLEMENTATION: polyqtlR is freely available from the Comprehensive R Archive Network (CRAN) at http://cran.r-project.org/package=polyqtlR. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Poliploidia , Locos de Características Quantitativas , Humanos , Mapeamento Cromossômico , Software , Funções Verossimilhança
2.
Nat Commun ; 9(1): 4734, 2018 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-30413711

RESUMO

Shapes of edible plant organs vary dramatically among and within crop plants. To explain and ultimately employ this variation towards crop improvement, we determined the genetic, molecular and cellular bases of fruit shape diversity in tomato. Through positional cloning, protein interaction studies, and genome editing, we report that OVATE Family Proteins and TONNEAU1 Recruiting Motif proteins regulate cell division patterns in ovary development to alter final fruit shape. The physical interactions between the members of these two families are necessary for dynamic relocalization of the protein complexes to different cellular compartments when expressed in tobacco leaf cells. Together with data from other domesticated crops and model plant species, the protein interaction studies provide possible mechanistic insights into the regulation of morphological variation in plants and a framework that may apply to organ growth in all plant species.


Assuntos
Biodiversidade , Frutas/anatomia & histologia , Frutas/genética , Plantas/anatomia & histologia , Plantas/genética , Sequência de Aminoácidos , Divisão Celular , Teste de Complementação Genética , Modelos Biológicos , Mapeamento Físico do Cromossomo , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Ligação Proteica , Saccharomyces cerevisiae/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...