Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
ALTEX ; 41(2): 213-232, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38376873

RESUMO

Next generation risk assessment of chemicals revolves around the use of mechanistic information without animal experimentation. In this regard, toxicogenomics has proven to be a useful tool to elucidate the underlying mechanisms of adverse effects of xenobiotics. In the present study, two widely used human in vitro hepatocyte culture systems, namely primary human hepatocytes (PHH) and human hepatoma HepaRG cells, were exposed to liver toxicants known to induce liver cholestasis, steatosis or necrosis. Benchmark concentration-response modelling was applied to transcriptomics gene co-expression networks (modules) to derive benchmark concentrations (BMCs) and to gain mechanistic insight into the hepatotoxic effects. BMCs derived by concentration-response modelling of gene co-expression modules recapitulated concentration-response modelling of individual genes. Although PHH and HepaRG cells showed overlap in deregulated genes and modules by the liver toxicants, PHH demonstrated a higher responsiveness, based on the lower BMCs of co-regulated gene modules. Such BMCs can be used as transcriptomics point of departure (tPOD) for assessing module-associated cellular (stress) pathways/processes. This approach identified clear tPODs of around maximum systemic concentration (Cmax) levels for the tested drugs, while for cosmetics ingredients the BMCs were 10-100-fold higher than the estimated plasma concentrations. This approach could serve next generation risk assessment practice to identify early responsive modules at low BMCs, that could be linked to key events in liver adverse outcome pathways. In turn, this can assist in delineating potential hazards of new test chemicals using in vitro systems and used in a risk assessment when BMCs are paired with chemical exposure assessment.


Risk assessment of chemicals has traditionally been focused on animal experiments. In contrast, next generation risk assessment uses biological information obtained from experiments in cell culture models without animals to identify potential hazards. Since the liver is the main target organ of toxicity, many liver cell (hepatocyte) models have been developed and applied for hazard assessment. In this study, two widely used human hepatocyte cell models, PHH and HepaRG, were exposed to liver toxic chemicals. Biological changes in gene expression were measured in a concentration range to identify the concentration at which a biological response was perturbed using concentration response modelling. Genes belonging to the same biological process were joined based on co-expression to derive an average concentration of this process. This animal-free approach could be applied for risk assessment when biological response concentrations were related to the expected human exposure to identify potential hazard of the test chemicals.


Assuntos
Segurança Química , Redes Reguladoras de Genes , Animais , Humanos , Hepatócitos , Fígado , Perfilação da Expressão Gênica
2.
Regul Toxicol Pharmacol ; 141: 105400, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37116736

RESUMO

Authorisation of ready to use plant protection products (PPPs) usually relies on the testing of acute and local toxicity only. This is in stark contrast to the situation for active substances where the mandatory data set comprises a most comprehensive set of studies. While the combination of certain active ingredients and co-formulants may nevertheless result in increased toxicity of the final product such combinations have never been evaluated systematically for complex and long-term toxicological endpoints. We therefore investigated the effect of three frequently used co-formulants on the toxicokinetic and toxicodynamic of the representative active substance combination of tebuconazol (Teb) and prothioconazol (Pro) or of cypermethrin (Cpm) and piperonyl butoxide (Pip), respectively. With all four active substances being potential liver steatogens, cytotoxicity and triglyceride accumulation in HepaRG were used as primary endpoints. Concomitantly transcriptomics and biochemical studies were applied to interrogate for effects on gene expression or inhibition of CYP3A4 as key enzyme for functionalization. Some of the tested combinations clearly showed more than additive effects, partly due to CYP3A4 enzyme inhibition. Other effects comprised the modulation of the expression and activity of steatosis-related nuclear key receptors. Altogether, the findings highlight the need for a more systematic consideration of toxicodynamic and toxicokinetic mixture effects during assessment of PPPs.


Assuntos
Citocromo P-450 CYP3A , Fígado , Toxicocinética , Receptores Citoplasmáticos e Nucleares
3.
Toxics ; 10(4)2022 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-35448431

RESUMO

The exposure of operators, workers, residents and bystanders to pesticides is of high potential concern. Yet, reports on pesticide residues in the environment and near treated fields often spark debates if such findings might indicate a health risk. Although the underlying models are considered conservative, there are only limited field data on systemic exposure available. As a first step to improve the situation, we conducted a scoping review of state-of-the-art pesticide exposure biomonitoring studies in operators, workers, residents or bystanders. In contrast to existing reviews, we focused on target cultures of potential high pesticide exposure such as tree-grown produce, vine or hops. The search was conducted in Web of Science, Scopus and PubMed. Out of 17 eligible articles, a total of 11 studies met our search criteria, and 6 of them quantified the systemic exposure of humans. The analysis revealed that exposure was mainly driven by application of pesticides and reentry work, resulting in a higher exposure of operators and workers than of residents and bystanders. In nearly all cases, the systemic exposure was below the relevant toxicological reference values. The studies were subsequently analyzed to identify key criteria for a reliable design of a biomonitoring study on pesticide exposure.

4.
Arch Toxicol ; 95(10): 3205-3221, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34417632

RESUMO

Currently, the authorisation process for plant protection products (PPPs) relies on the testing of acute and topological toxicity only. Contrastingly, the evaluation of active substances includes a more comprehensive set of toxicity studies. Nevertheless, mixture effects of active ingredients and co-formulants may result in increased toxicity. Therefore, we investigated effects of surface active co-formulants on the toxicity of two PPPs focussing on qualitative and quantitative toxicokinetic effects on absorption and secretion. The respective products are based on the active substances abamectin and fluroxypyr-meptyl and were tested for cytotoxicity in the presence or absence of the corresponding surfactants and co-formulants using Caco-2 cells. In addition, the effect of co-formulants on increased cellular permeation was quantified using LC-MS/MS, while potential kinetic mixture effects were addressed by fluorescence anisotropy measurements and ATPase assays. The results show that surface active co-formulants significantly increase the cytotoxicity of the investigated PPPs, leading to more than additive mixture effects. Moreover, analytical investigations show higher efflux ratios of both active substances and the metabolite fluroxypyr upon combination with certain concentrations of the surfactants. The results further point to a significant and concentration-dependent inhibition of Pgp transporters by most of the surfactants as well as to increased membrane fluidity. Altogether, these findings strongly support the hypothesis that surfactants contribute to increased cytotoxicity of PPPs and do so by increasing the bioavailability of the respective active substances.


Assuntos
Glicolatos/toxicidade , Herbicidas/toxicidade , Inseticidas/toxicidade , Ivermectina/análogos & derivados , Disponibilidade Biológica , Células CACO-2 , Cromatografia Líquida , Polarização de Fluorescência , Glicolatos/administração & dosagem , Glicolatos/farmacocinética , Herbicidas/administração & dosagem , Herbicidas/farmacocinética , Humanos , Inseticidas/administração & dosagem , Inseticidas/farmacocinética , Ivermectina/administração & dosagem , Ivermectina/farmacocinética , Ivermectina/toxicidade , Tensoativos/química , Espectrometria de Massas em Tandem
5.
Circulation ; 123(5): 504-14, 2011 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-21262993

RESUMO

BACKGROUND: Fibroblast growth factor 9 (FGF9) is secreted from bone marrow cells, which have been shown to improve systolic function after myocardial infarction (MI) in a clinical trial. FGF9 promotes cardiac vascularization during embryonic development but is only weakly expressed in the adult heart. METHODS AND RESULTS: We used a tetracycline-responsive binary transgene system based on the α-myosin heavy chain promoter to test whether conditional expression of FGF9 in the adult myocardium supports adaptation after MI. In sham-operated mice, transgenic FGF9 stimulated left ventricular hypertrophy with microvessel expansion and preserved systolic and diastolic function. After coronary artery ligation, transgenic FGF9 enhanced hypertrophy of the noninfarcted left ventricular myocardium with increased microvessel density, reduced interstitial fibrosis, attenuated fetal gene expression, and improved systolic function. Heart failure mortality after MI was markedly reduced by transgenic FGF9, whereas rupture rates were not affected. Adenoviral FGF9 gene transfer after MI similarly promoted left ventricular hypertrophy with improved systolic function and reduced heart failure mortality. Mechanistically, FGF9 stimulated proliferation and network formation of endothelial cells but induced no direct hypertrophic effects in neonatal or adult rat cardiomyocytes in vitro. FGF9-stimulated endothelial cell supernatants, however, induced cardiomyocyte hypertrophy via paracrine release of bone morphogenetic protein 6. In accord with this observation, expression of bone morphogenetic protein 6 and phosphorylation of its downstream targets SMAD1/5 were increased in the myocardium of FGF9 transgenic mice. CONCLUSIONS: Conditional expression of FGF9 promotes myocardial vascularization and hypertrophy with enhanced systolic function and reduced heart failure mortality after MI. These observations suggest a previously unrecognized therapeutic potential for FGF9 after MI.


Assuntos
Fator 9 de Crescimento de Fibroblastos/farmacologia , Insuficiência Cardíaca/prevenção & controle , Infarto do Miocárdio/complicações , Animais , Proteína Morfogenética Óssea 6/genética , Proteína Morfogenética Óssea 6/metabolismo , Fator 9 de Crescimento de Fibroblastos/administração & dosagem , Fator 9 de Crescimento de Fibroblastos/genética , Expressão Gênica/efeitos dos fármacos , Coração , Insuficiência Cardíaca/mortalidade , Hipertrofia Ventricular Esquerda/induzido quimicamente , Camundongos , Camundongos Transgênicos , Neovascularização Patológica/induzido quimicamente , Fosforilação , Ratos , Tetraciclina/farmacologia
6.
J Biol Chem ; 281(43): 32831-40, 2006 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-16943189

RESUMO

Cardiac myocyte apoptosis during ischemia and reperfusion (I/R) is tightly controlled by a complex network of stress-responsive signaling pathways. One pro-apoptotic pathway involves the interaction of the scaffold protein TAB1 with p38 mitogen-activated protein kinase (p38 MAPK) leading to the autophosphorylation and activation of p38 MAPK. Conversely, NO and its second messenger cGMP protect cardiac myocytes from apoptosis during I/R. We provide evidence that the cGMP target cGMP-dependent protein kinase type I (PKG I) interferes with TAB1-p38 MAPK signaling to protect cardiac myocytes from I/R injury. In isolated neonatal cardiac myocytes, activation of PKG I inhibited the interaction of TAB1 with p38 MAPK, p38 MAPK phosphorylation, and apoptosis induced by simulated I/R. During I/R in vivo, mice with a cardiac myocyte-restricted deletion of PKG I displayed a more pronounced interaction of TAB1 with p38 MAPK and a stronger phosphorylation of p38 MAPK in the myocardial area at risk during reperfusion and more apoptotic cardiac myocytes in the infarct border zone as compared with wild-type littermates. Notably, adenoviral expression of a constitutively active PKG I mutant truncated at the N terminus(PKGI-DeltaN1-92) did not inhibit p38 MAPK phosphorylation and apoptosis induced by simulated I/R in vitro, indicating that the N terminus of PKG I is required. As shown by co-immunoprecipitation experiments in HEK293 cells, cGMP-activated PKG I, but not constitutively active PKG I-DeltaN1-92 or PKG I mutants carrying point mutations in the N-terminal leucine-isoleucine zipper, interacted with p38 MAPK, and prevented the binding of TAB1 to p38 MAPK. Together, our data identify a novel interaction between the cGMP target PKG I and the TAB1-p38 MAPK signaling pathway that serves as a defense mechanism against myocardial I/R injury.


Assuntos
Apoptose/efeitos dos fármacos , Proteínas Quinases Dependentes de GMP Cíclico/farmacologia , Peptídeos e Proteínas de Sinalização Intracelular/antagonistas & inibidores , Miócitos Cardíacos/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Proteínas Quinases p38 Ativadas por Mitógeno/antagonistas & inibidores , Adenoviridae/genética , Animais , Animais Recém-Nascidos , Células Cultivadas , Proteína Quinase Dependente de GMP Cíclico Tipo I , Ativação Enzimática , Ventrículos do Coração/citologia , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , Ratos , Ratos Sprague-Dawley
7.
Circulation ; 113(9): 1203-12, 2006 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-16505176

RESUMO

BACKGROUND: Ischemic heart disease and heart failure are associated with an increased loss of cardiomyocytes due to apoptosis. Whether cardiomyocyte apoptosis plays a causal role in the pathogenesis of heart failure remains enigmatic. The apoptosis repressor with caspase recruitment domain (ARC) is a recently discovered antiapoptotic factor with a highly specific expression pattern in striated muscle and neurons. ARC is a master regulator of cardiac death signaling because it is the only known factor that specifically inhibits both the intrinsic and extrinsic apoptotic death pathway. In this study we attempted to elucidate the physiological role of ARC and to understand pathophysiological consequences resulting from its deletion. METHODS AND RESULTS: We generated ARC-deficient mice, which developed normally to adulthood and had no abnormality in cardiac morphology and function under resting conditions. On biomechanical stress induced by aortic banding, ARC-deficient mice developed accelerated cardiomyopathy compared with littermate controls, which was characterized by reduced contractile function, cardiac enlargement, and myocardial fibrosis. Likewise, ischemia/reperfusion injury of ARC-deficient mice resulted in markedly increased myocardial infarct sizes. Although in both instances a significant increase in apoptotic cardiomyocytes could be observed in ARC-deficient mice, neither in vitro nor in vivo studies revealed any effect of ARC on classic hypertrophic cardiomyocyte growth responses. The pathophysiological relevance of downregulated ARC levels was underscored by specimens from failing human hearts showing markedly reduced ARC protein levels. CONCLUSIONS: Our study identifies a tissue-specific antiapoptotic factor that is downregulated in human failing myocardium and that is required for cardioprotection in pressure overload and ischemia.


Assuntos
Proteínas Reguladoras de Apoptose/fisiologia , Insuficiência Cardíaca/etiologia , Proteínas Musculares/fisiologia , Isquemia Miocárdica , Estresse Fisiológico , Animais , Apoptose , Proteínas Reguladoras de Apoptose/análise , Proteínas Reguladoras de Apoptose/deficiência , Fenômenos Biomecânicos , Pressão Sanguínea , Regulação para Baixo , Fibrose , Insuficiência Cardíaca/patologia , Humanos , Camundongos , Camundongos Knockout , Proteínas Musculares/análise , Proteínas Musculares/deficiência , Infarto do Miocárdio/etiologia
8.
Circ Res ; 98(3): 351-60, 2006 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-16397141

RESUMO

Data from the Women's Health Study show that serum levels of growth-differentiation factor-15 (GDF-15), a distant member of the transforming growth factor-beta superfamily, are an independent risk indicator for adverse cardiovascular events. However, the cellular sources, upstream regulators, and functional effects of GDF-15 in the cardiovascular system have not been elucidated. We have identified GDF-15 by cDNA expression array analysis as a gene that is strongly upregulated by nitrosative stress in cultured cardiomyocytes isolated from 1- to 3-day-old rats. GDF-15 mRNA and pro-peptide expression levels were also induced in cardiomyocytes subjected to simulated ischemia/reperfusion (I/R) via NO-peroxynitrite-dependent signaling pathways. GDF-15 was actively secreted into the culture supernatant, suggesting that it might exert autocrine/paracrine effects during I/R. To explore the in vivo relevance of these findings, mice were subjected to transient or permanent coronary artery ligation. Myocardial GDF-15 mRNA and pro-peptide abundance rapidly increased in the area-at-risk after ischemic injury. Similarly, patients with an acute myocardial infarction had enhanced myocardial GDF-15 pro-peptide expression levels. As shown by immunohistochemistry, cardiomyocytes in the ischemic area contributed significantly to the induction of GDF-15 in the infarcted human heart. To delineate the function of GDF-15 during I/R, Gdf-15 gene-targeted mice were subjected to transient coronary artery ligation for 1 hour followed by reperfusion for 24 hours. Gdf-15-deficient mice developed greater infarct sizes and displayed more cardiomyocyte apoptosis in the infarct border zone after I/R compared with wild-type littermates, indicating that endogenous GDF-15 limits myocardial tissue damage in vivo. Moreover, treatment with recombinant GDF-15 protected cultured cardiomyocytes from apoptosis during simulated I/R as shown by histone ELISA, TUNEL/Hoechst staining, and annexin V/propidium iodide fluorescence-activated cell sorting (FACS) analysis. Mechanistically, the prosurvival effects of GDF-15 in cultured cardiomyocytes were abolished by phosphoinositide 3-OH kinase inhibitors and adenoviral expression of dominant-negative Akt1 (K179M mutation). In conclusion, our study identifies induction of GDF-15 in the heart as a novel defense mechanism that protects from I/R injury.


Assuntos
Citocinas/fisiologia , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Fator de Crescimento Transformador beta/fisiologia , Função Ventricular , Idoso , Animais , Apoptose , Células Cultivadas , Vasos Coronários/fisiologia , Citocinas/deficiência , Citocinas/genética , Feminino , Fator 15 de Diferenciação de Crescimento , Ventrículos do Coração/citologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Pessoa de Meia-Idade , Células Musculares/fisiologia , Ratos , Ratos Sprague-Dawley
9.
Proc Natl Acad Sci U S A ; 102(5): 1655-60, 2005 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-15665106

RESUMO

Adverse left ventricular (LV) remodeling after myocardial infarction (MI) is a major cause for heart failure. Molecular modifiers of the remodeling process remain poorly defined. Patients with heart failure after MI have reduced LV expression levels of muscle LIM protein (MLP), a component of the sarcomeric Z-disk that is involved in the integration of stress signals in cardiomyocytes. By using heterozygous MLP mutant (MLP+/-) mice, we explored the role of MLP in post-MI remodeling. LV dimensions and function were similar in sham-operated WT and MLP+/- mice. After MI, however, MLP+/- mice displayed more pronounced LV dilatation and systolic dysfunction and decreased survival compared with WT mice, indicating that reduced MLP levels predispose to adverse LV remodeling. LV dilatation in MLP+/- mice was associated with reduced thickening but enhanced elongation of cardiomyocytes. Activation of the stress-responsive, prohypertrophic calcineurin-nuclear factor of activated T-cells (NFAT) signaling pathway was reduced in MLP+/- mice after MI, as shown by a blunted transcriptional activation of NFAT in cardiomyocytes isolated from MLP+/-/NFAT-luciferase reporter gene transgenic mice. Calcineurin was colocalized with MLP at the Z-disk in WT mice but was displaced from the Z-disk in MLP+/- mice, indicating that MLP is essential for calcineurin anchorage to the Z-disk. In vitro assays in cardiomyocytes with down-regulated MLP confirmed that MLP is required for stress-induced calcineurin-NFAT activation. Our study reveals a link between the stress sensor MLP and the calcineurin-NFAT pathway at the sarcomeric Z-disk in cardiomyocytes and indicates that reduced MLP-calcineurin signaling predisposes to adverse remodeling after MI.


Assuntos
Calcineurina/fisiologia , Coração/fisiologia , Proteínas Musculares/fisiologia , Infarto do Miocárdio/fisiopatologia , Sarcômeros/fisiologia , Remodelação Ventricular/fisiologia , Animais , Modelos Animais de Doenças , Ecocardiografia , Proteínas com Domínio LIM , Camundongos , Camundongos Knockout , Camundongos Mutantes , Proteínas Musculares/deficiência , Proteínas Musculares/genética , Infarto do Miocárdio/diagnóstico por imagem , Infarto do Miocárdio/patologia , Sarcômeros/ultraestrutura , Transdução de Sinais , Sístole , Vasodilatação , Função Ventricular Esquerda/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA