Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Rev Sci Instrum ; 93(3): 033304, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-35364990

RESUMO

The response of the BAS-TR image plate (IP) was absolutely calibrated using a CR-39 track detector for high linear energy transfer Au ions up to ∼1.6 GeV (8.2 MeV/nucleon), accelerated by high-power lasers. The calibration was carried out by employing a high-resolution Thomson parabola spectrometer, which allowed resolving Au ions with closely spaced ionization states up to 58+. A response function was obtained by fitting the photo-stimulated luminescence per Au ion for different ion energies, which is broadly in agreement with that expected from ion stopping in the active layer of the IP. This calibration would allow quantifying the ion energy spectra for high energy Au ions, which is important for further investigation of the laser-based acceleration of heavy ion beams.

2.
Rev Sci Instrum ; 92(11): 113303, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34852516

RESUMO

The advent of multi-PW laser facilities world-wide opens new opportunities for nuclear physics. With this perspective, we developed a neutron counter taking into account the specifics of a high-intensity laser environment. Using GEANT4 simulations and prototype testings, we report on the design of a modular neutron counter based on boron-10 enriched scintillators and a high-density polyethylene moderator. This detector has been calibrated using a plutonium-beryllium neutron source and commissioned during an actual neutron-producing laser experiment at the LULI2000 facility (France). An overall efficiency of 4.37(59)% has been demonstrated during calibration with a recovery time of a few hundred microseconds after laser-plasma interaction.

3.
Nat Commun ; 12(1): 762, 2021 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-33536408

RESUMO

The shaping of astrophysical outflows into bright, dense, and collimated jets due to magnetic pressure is here investigated using laboratory experiments. Here we look at the impact on jet collimation of a misalignment between the outflow, as it stems from the source, and the magnetic field. For small misalignments, a magnetic nozzle forms and redirects the outflow in a collimated jet. For growing misalignments, this nozzle becomes increasingly asymmetric, disrupting jet formation. Our results thus suggest outflow/magnetic field misalignment to be a plausible key process regulating jet collimation in a variety of objects from our Sun's outflows to extragalatic jets. Furthermore, they provide a possible interpretation for the observed structuring of astrophysical jets. Jet modulation could be interpreted as the signature of changes over time in the outflow/ambient field angle, and the change in the direction of the jet could be the signature of changes in the direction of the ambient field.

4.
Phys Rev Lett ; 123(20): 205001, 2019 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-31809120

RESUMO

Magnetized laser-produced plasmas are central to many novel laboratory astrophysics and inertial confinement fusion studies, as well as in industrial applications. Here we provide the first complete description of the three-dimensional dynamics of a laser-driven plasma plume expanding in a 20 T transverse magnetic field. The plasma is collimated by the magnetic field into a slender, rapidly elongating slab, whose plasma-vacuum interface is unstable to the growth of the "classical," fluidlike magnetized Rayleigh-Taylor instability.

5.
Rev Sci Instrum ; 90(5): 053307, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-31153256

RESUMO

The design and operation of an online energy and spatially resolving detector based on three different scintillators for laser-driven protons are described. The device can be used for a multi-Hertz recording rate. The spatial resolution is <0.5 mm, allowing to retrieve details of the proton beam which is of interest, e.g., for radiographic applications. At the same time, the particle energy is divided into three energy bands between 1 MeV and 5 MeV to retrieve the proton energy spectrum. The absolute response of the detector was calibrated at a conventional proton accelerator.

6.
Rev Sci Instrum ; 90(4): 043301, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31042983

RESUMO

A cryogenic hydrogen cluster-jet target is described which has been used for laser-plasma interaction studies. Major advantages of the cluster-jet are, on the one hand, the compatibility to pulsed high repetition lasers as the target is operated continuously and, on the other hand, the absence of target debris. The cluster-jet target was characterized using the Mie-scattering technique allowing to determine the cluster size and to compare the measurements with an empirical formula. In addition, an estimation of the cluster beam density was performed. The system was implemented at the high power laser system ARCTURUS, and the measurements show the acceleration of protons after irradiation of the cluster target by high intensity laser pulses with a repetition rate of 5 Hz.

7.
Phys Rev Lett ; 122(2): 025001, 2019 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-30720299

RESUMO

The propagation of fast electron currents in near solid-density media was investigated via proton probing. Fast currents were generated inside dielectric foams via irradiation with a short (∼0.6 ps) laser pulse focused at relativistic intensities (Iλ^{2}∼4×10^{19} W cm^{-2} µm^{2}). Proton probing provided a spatially and temporally resolved characterization of the evolution of the electromagnetic fields and of the associated net currents directly inside the target. The progressive growth of beam filamentation was temporally resolved and information on the divergence of the fast electron beam was obtained. Hybrid simulations of electron propagation in dense media indicate that resistive effects provide a major contribution to field generation and explain well the topology, magnitude, and temporal growth of the fields observed in the experiment. Estimations of the growth rates for different types of instabilities pinpoints the resistive instability as the most likely dominant mechanism of beam filamentation.

8.
Sci Rep ; 8(1): 14586, 2018 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-30275488

RESUMO

Our understanding of the dynamics of ion collisional energy loss in a plasma is still not complete, in part due to the difficulty and lack of high-quality experimental measurements. These measurements are crucial to benchmark existing models. Here, we show that such a measurement is possible using high-flux proton beams accelerated by high intensity short pulse lasers, where there is a high number of particles in a picosecond pulse, which is ideal for measurements in quickly expanding plasmas. By reducing the energy bandwidth of the protons using a passive selector, we have made proton stopping measurements in partially ionized Argon and fully ionized Hydrogen plasmas with electron temperatures of hundreds of eV and densities in the range 1020-1021 cm-3. In the first case, we have observed, consistently with previous reports, enhanced stopping of protons when compared to stopping power in non-ionized gas. In the second case, we have observed for the first time the regime of reduced stopping, which is theoretically predicted in such hot and fully ionized plasma. The versatility of these tunable short-pulse laser based ion sources, where the ion type and energy can be changed at will, could open up the possibility for a variety of ion stopping power measurements in plasmas so long as they are well characterized in terms of temperature and density. In turn, these measurements will allow tests of the validity of existing theoretical models.

9.
Sci Rep ; 7(1): 16463, 2017 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-29184108

RESUMO

A new type of proton acceleration stemming from large-scale gradients, low-density targets, irradiated by an intense near-infrared laser is observed. The produced protons are characterized by high-energies (with a broad spectrum), are emitted in a very directional manner, and the process is associated to relaxed laser (no need for high-contrast) and target (no need for ultra-thin or expensive targets) constraints. As such, this process appears quite effective compared to the standard and commonly used Target Normal Sheath Acceleration technique (TNSA), or more exploratory mechanisms like Radiation Pressure Acceleration (RPA). The data are underpinned by 3D numerical simulations which suggest that in these conditions a Low Density Collisionless Shock Acceleration (LDCSA) mechanism is at play, which combines an initial Collisionless Shock Acceleration (CSA) to a boost procured by a TNSA-like sheath field in the downward density ramp of the target, leading to an overall broad spectrum. Experiments performed at a laser intensity of 1020 W/cm2 show that LDCSA can accelerate, from ~1% critical density, mm-scale targets, up to 5 × 109 protons/MeV/sr/J with energies up to 45(±5) MeV in a collimated (~6° half-angle) manner.

10.
Sci Rep ; 7(1): 13505, 2017 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-29044204

RESUMO

We have investigated proton acceleration in the forward direction from a near-critical density hydrogen gas jet target irradiated by a high intensity (1018 W/cm2), short-pulse (5 ps) laser with wavelength of 1.054 µm. We observed the signature of the Collisionless Shock Acceleration mechanism, namely quasi-monoenergetic proton beams with small divergence in addition to the more commonly observed electron-sheath driven proton acceleration. The proton energies we obtained were modest (~MeV), but prospects for improvement are offered through further tailoring the gas jet density profile. Also, we observed that this mechanism is very robust in producing those beams and thus can be considered as a future candidate in laser-driven ion sources driven by the upcoming next generation of multi-PW near-infrared lasers.

11.
Sci Rep ; 7(1): 10891, 2017 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-28883424

RESUMO

The characteristics of laser driven proton beams can be efficiently controlled and optimised by employing a recently developed helical coil technique, which exploits the transient self-charging of solid targets irradiated by intense laser pulses. Here we demonstrate a well collimated (<1° divergence) and narrow bandwidth (~10% energy spread) proton beamlet of ~107 particles at 10 ± 0.5 MeV obtained by irradiating helical coil targets with a few joules, sub-ps laser pulses at an intensity of ~2 × 1019 W cm-2. The experimental data are in good agreement with particle tracing simulations suggesting post-acceleration of protons inside the coil at a rate ~0.7 MeV/mm, which is comparable to the results obtained from a similar coil target irradiated by a fs class laser at an order of magnitude higher intensity, as reported in S. Kar et al., Nat. Commun, 7, 10792 (2016). The dynamics of hot electron escape from the laser irradiated target was studied numerically for these two irradiation regimes, which shows that the target self-charging can be optimised at a pulse duration of few hundreds of fs. This information is highly beneficial for maximising the post-acceleration gradient in future experiments.

12.
Phys Rev Lett ; 119(25): 255002, 2017 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-29303310

RESUMO

We investigate the formation of a laser-produced magnetized jet under conditions of a varying mass ejection rate and a varying divergence of the ejected plasma flow. This is done by irradiating a solid target placed in a 20 T magnetic field with, first, a collinear precursor laser pulse (10^{12} W/cm^{2}) and, then, a main pulse (10^{13} W/cm^{2}) arriving 9-19 ns later. Varying the time delay between the two pulses is found to control the divergence of the expanding plasma, which is shown to increase the strength of and heating in the conical shock that is responsible for jet collimation. These results show that plasma collimation due to shocks against a strong magnetic field can lead to stable, astrophysically relevant jets that are sustained over time scales 100 times the laser pulse duration (i.e., >70 ns), even in the case of strong variability at the source.

13.
Rev Sci Instrum ; 87(11): 11D827, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27910336

RESUMO

We report on the successful operation of a newly developed cryogenic jet target at high intensity laser-irradiation. Using the frequency-doubled Titan short pulse laser system at Jupiter Laser Facility, Lawrence Livermore National Laboratory, we demonstrate the generation of a pure proton beam a with maximum energy of 2 MeV. Furthermore, we record a quasi-monoenergetic peak at 1.1 MeV in the proton spectrum emitted in the laser forward direction suggesting an alternative acceleration mechanism. Using a solid-density mixed hydrogen-deuterium target, we are also able to produce pure proton-deuteron ion beams. With its high purity, limited size, near-critical density, and high-repetition rate capability, this target is promising for future applications.

14.
Sci Rep ; 6: 32441, 2016 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-27578260

RESUMO

Ultra-short proton pulses originating from laser-plasma accelerators can provide instantaneous dose rates at least 10(7)-fold in excess of conventional, continuous proton beams. The impact of such extremely high proton dose rates on A549 human lung cancer cells was compared with conventionally accelerated protons and 90 keV X-rays. Between 0.2 and 2 Gy, the yield of DNA double strand breaks (foci of phosphorylated histone H2AX) was not significantly different between the two proton sources or proton irradiation and X-rays. Protein nitroxidation after 1 h judged by 3-nitrotyrosine generation was 2.5 and 5-fold higher in response to conventionally accelerated protons compared to laser-driven protons and X-rays, respectively. This difference was significant (p < 0.01) between 0.25 and 1 Gy. In conclusion, ultra-short proton pulses originating from laser-plasma accelerators have a similar DNA damaging potential as conventional proton beams, while inducing less immediate nitroxidative stress, which probably entails a distinct therapeutic potential.


Assuntos
Quebras de DNA de Cadeia Dupla/efeitos da radiação , DNA/efeitos da radiação , Histonas/efeitos da radiação , Prótons , Eficiência Biológica Relativa , Células A549 , Relação Dose-Resposta à Radiação , Histonas/metabolismo , Humanos , Lasers , Óxidos de Nitrogênio/metabolismo , Fosforilação , Tirosina/análogos & derivados , Tirosina/biossíntese
15.
Phys Rev Lett ; 115(5): 054802, 2015 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-26274423

RESUMO

The production of neutron beams having short temporal duration is studied using ultraintense laser pulses. Laser-accelerated protons are spectrally filtered using a laser-triggered microlens to produce a short duration neutron pulse via nuclear reactions induced in a converter material (LiF). This produces a ∼3 ns duration neutron pulse with 10(4) n/MeV/sr/shot at 0.56 m from the laser-irradiated proton source. The large spatial separation between the neutron production and the proton source allows for shielding from the copious and undesirable radiation resulting from the laser-plasma interaction. This neutron pulse compares favorably to the duration of conventional accelerator sources and should scale up with, present and future, higher energy laser facilities to produce brighter and shorter neutron beams for ultrafast probing of dense materials.

16.
Rev Sci Instrum ; 86(4): 043502, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25933857

RESUMO

Ultra-intense lasers can nowadays routinely accelerate kiloampere ion beams. These unique sources of particle beams could impact many societal (e.g., proton-therapy or fuel recycling) and fundamental (e.g., neutron probing) domains. However, this requires overcoming the beam angular divergence at the source. This has been attempted, either with large-scale conventional setups or with compact plasma techniques that however have the restriction of short (<1 mm) focusing distances or a chromatic behavior. Here, we show that exploiting laser-triggered, long-lasting (>50 ps), thermoelectric multi-megagauss surface magnetic (B)-fields, compact capturing, and focusing of a diverging laser-driven multi-MeV ion beam can be achieved over a wide range of ion energies in the limit of a 5° acceptance angle.

17.
Rev Sci Instrum ; 86(12): 123302, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26724017

RESUMO

The paper presents the calibration of Fuji BAS-TR image plate (IP) response to high energy carbon ions of different charge states by employing an intense laser-driven ion source, which allowed access to carbon energies up to 270 MeV. The calibration method consists of employing a Thomson parabola spectrometer to separate and spectrally resolve different ion species, and a slotted CR-39 solid state detector overlayed onto an image plate for an absolute calibration of the IP signal. An empirical response function was obtained which can be reasonably extrapolated to higher ion energies. The experimental data also show that the IP response is independent of ion charge states.

18.
Phys Rev Lett ; 113(23): 235001, 2014 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-25526131

RESUMO

The intricate spatial and energy distribution of magnetic fields, self-generated during high power laser irradiation (at Iλ^{2}∼10^{13}-10^{14} W.cm^{-2}.µm^{2}) of a solid target, and of the heat-carrying electron currents, is studied in inertial confinement fusion (ICF) relevant conditions. This is done by comparing proton radiography measurements of the fields to an improved magnetohydrodynamic description that fully takes into account the nonlocality of the heat transport. We show that, in these conditions, magnetic fields are rapidly advected radially along the target surface and compressed over long time scales into the dense parts of the target. As a consequence, the electrons are weakly magnetized in most parts of the plasma flow, and we observe a reemergence of nonlocality which is a crucial effect for a correct description of the energetics of ICF experiments.

19.
Rev Sci Instrum ; 85(3): 033304, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24689572

RESUMO

A modification to the standard Thomson parabola spectrometer is discussed, which is designed to measure high energy (tens of MeV/nucleon), broad bandwidth spectra of multi-species ions accelerated by intense laser plasma interactions. It is proposed to implement a pair of extended, trapezoidal shaped electric plates, which will not only resolve ion traces at high energies, but will also retain the lower energy part of the spectrum. While a longer (along the axis of the undeflected ion beam direction) electric plate design provides effective charge state separation at the high energy end of the spectrum, the proposed new trapezoidal shape will enable the low energy ions to reach the detector, which would have been clipped or blocked by simply extending the rectangular plates to enhance the electrostatic deflection.

20.
Phys Rev Lett ; 110(13): 135003, 2013 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-23581330

RESUMO

Using ion carbon beams generated by high intensity short pulse lasers we perform measurements of single shot mean charge equilibration in cold or isochorically heated solid density aluminum matter. We demonstrate that plasma effects in such matter heated up to 1 eV do not significantly impact the equilibration of carbon ions with energies 0.045-0.5 MeV/nucleon. Furthermore, these measurements allow for a first evaluation of semiempirical formulas or ab initio models that are being used to predict the mean of the equilibrium charge state distribution for light ions passing through warm dense matter.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...