Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ups J Med Sci ; 125(4): 274-280, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32812807

RESUMO

BACKGROUND: The most profound effect of vasopressin on the kidney is to increase water reabsorption through V2-receptor (V2R) stimulation, but there are also data suggesting effects on calcium transport. To address this issue, we have established an isolated perfused kidney model with accurate pressure control, to directly study the effects of V2R stimulation on kidney function, isolated from systemic effects. METHODS: The role of V2R in renal calcium handling was studied in isolated rat kidneys using a new pressure control system that uses a calibration curve to compensate for the internal pressure drop up to the tip of the perfusion cannula. RESULTS: Kidneys subjected to V2R stimulation using desmopressin (DDAVP) displayed stable osmolality and calcium reabsorption throughout the experiment, whereas kidneys not administered DDAVP exhibited a simultaneous fall in urine osmolality and calcium reabsorption. Epithelial sodium channel (ENaC) inhibition using amiloride resulted in a marked increase in potassium reabsorption along with decreased sodium reabsorption. CONCLUSIONS: A stable isolated perfused kidney model with computer-controlled pressure regulation was developed, which retained key physiological functions. The preparation responds to pharmacological inhibition of ENaC channels and activation of V2R. Using the model, the dynamic effects of V2R stimulation on calcium handling and urine osmolality could be visualised. The study thereby provides evidence for a stimulatory role of V2R in renal calcium reabsorption.


Assuntos
Cálcio/metabolismo , Canais Epiteliais de Sódio/metabolismo , Rim/metabolismo , Receptores de Vasopressinas/metabolismo , Animais , Transporte Biológico , Calibragem , Desamino Arginina Vasopressina/metabolismo , Eletrólitos , Taxa de Filtração Glomerular , Masculino , Concentração Osmolar , Perfusão , Ratos , Ratos Sprague-Dawley , Receptores de Vasopressinas/efeitos dos fármacos
2.
Am J Physiol Renal Physiol ; 318(3): F763-F771, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-31961715

RESUMO

There is a need for improved animal models that better translate to human kidney disease to predict outcome of pharmacological effects in the patient. The diabetic BTBRob/ob mouse model mimics key features of early diabetic nephropathy in humans, but with chronic injury limited to glomeruli. To explore if we could induce an accelerated and more advanced disease phenotype that closer translates to human disease, we challenged BTBRob/ob mice with a high-protein diet (HPD; 30%) and followed the progression of metabolic and renal changes up to 20 wk of age. Animals on the HPD showed enhanced metabolic derangements, evidenced by further increased levels of glucose, HbA1C, cholesterol, and alanine aminotransferase. The urinary albumin-to-creatinine ratio was markedly increased with a 53-fold change compared with lean controls, whereas BTBRob/ob mice on the standard diet only presented an 8-fold change. HPD resulted in more advanced mesangial expansion already at 14 wk of age compared with BTBRob/ob mice on the standard diet and also aggravated glomerular pathology as well as interstitial fibrosis. Gene expression analysis revealed that HPD triggered expression of markers of fibrosis and inflammation in the kidney and increased oxidative stress markers in urine. This study showed that HPD significantly aggravated renal injury in BTBRob/ob mice by further advancing albuminuria, glomerular, and tubulointerstitial pathology by 20 wk of age. This mouse model offers closer translation to humans and enables exploration of new end points for pharmacological efficacy studies that also holds promise to shorten study length.


Assuntos
Diabetes Mellitus Tipo 2/patologia , Dieta Rica em Proteínas/efeitos adversos , Nefropatias/patologia , Animais , Glicemia , Nefropatias Diabéticas/metabolismo , Progressão da Doença , Feminino , Regulação da Expressão Gênica , Camundongos , Camundongos Endogâmicos
3.
J Renin Angiotensin Aldosterone Syst ; 20(1): 1470320319827449, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30813831

RESUMO

INTRODUCTION:: AZD9977 is a novel mineralocorticoid receptor (MR) modulator, which in preclinical studies demonstrated organ protection without affecting aldosterone-regulated urinary electrolyte excretion. However, when tested in humans, using fludrocortisone as an MR agonist, AZD9977 exhibited similar effects on urinary Na+/K+ ratio as eplerenone. The aim of this study is to understand whether the contradictory results seen in rats and humans are due to the mineralocorticoid used. MATERIALS AND METHODS:: Rats were treated with single doses of AZD9977 or eplerenone in combination with either aldosterone or fludrocortisone. Urine was collected for five to six hours and total amounts excreted Na+ and K+ were assessed. RESULTS:: AZD9977 dose-dependently increased urinary Na+/K+ ratio in rats when tested against fludrocortisone, but not when tested against aldosterone. Eplerenone dose-dependently increased urinary Na+/K+ ratio when tested against fludrocortisone as well as aldosterone. CONCLUSIONS:: The data suggest that the contrasting effects of AZD9977 on urinary electrolyte excretion observed in rats and humans are due to the use of the synthetic mineralocorticoid fludrocortisone. Future clinical studies are required to confirm the reduced electrolyte effects of AZD9977 and the subsequent lower predicted hyperkalemia risk.


Assuntos
Aldosterona/farmacologia , Benzoatos/farmacologia , Fludrocortisona/farmacologia , Mineralocorticoides/farmacologia , Oxazinas/farmacologia , Receptores de Mineralocorticoides/metabolismo , Aldosterona/administração & dosagem , Animais , Benzoatos/administração & dosagem , Eplerenona/farmacologia , Fludrocortisona/administração & dosagem , Humanos , Oxazinas/administração & dosagem , Potássio/urina , Ratos , Sódio/urina
4.
J Med Chem ; 62(3): 1385-1406, 2019 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-30596500

RESUMO

The mechanism-based risk for hyperkalemia has limited the use of mineralocorticoid receptor antagonists (MRAs) like eplerenone in cardio-renal diseases. Here, we describe the structure and property-driven lead generation and optimization, which resulted in identification of MR modulators ( S)-1 and ( S)-33. Both compounds were partial MRAs but still demonstrated equally efficacious organ protection as eplerenone after 4 weeks of treatment in uni-nephrectomized rats on high-salt diet and aldosterone infusion. Importantly, and in sharp contrast to eplerenone, this was achieved without substantial changes to the urine Na+/K+ ratio after acute treatment in rat, which predicts a reduced risk for hyperkalemia. This work led to selection of ( S)-1 (AZD9977) as the clinical candidate for treating MR-mediated cardio-renal diseases, including chronic kidney disease and heart failure. On the basis of our findings, we propose an empirical model for prediction of compounds with low risk of affecting the urinary Na+/K+ ratio in vivo.


Assuntos
Homeostase/efeitos dos fármacos , Antagonistas de Receptores de Mineralocorticoides/farmacologia , Oxazinas/farmacologia , Potássio/metabolismo , Substâncias Protetoras/farmacologia , Sódio/metabolismo , Animais , Coração/efeitos dos fármacos , Humanos , Rim/efeitos dos fármacos , Masculino , Antagonistas de Receptores de Mineralocorticoides/síntese química , Antagonistas de Receptores de Mineralocorticoides/metabolismo , Estrutura Molecular , Oxazinas/síntese química , Oxazinas/metabolismo , Potássio/urina , Substâncias Protetoras/síntese química , Substâncias Protetoras/metabolismo , Ratos Sprague-Dawley , Ratos Wistar , Receptores de Mineralocorticoides/metabolismo , Insuficiência Renal Crônica/tratamento farmacológico , Sódio/urina , Relação Estrutura-Atividade
5.
PLoS One ; 13(2): e0193380, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29474466

RESUMO

Excess mineralocorticoid receptor (MR) activation promotes target organ dysfunction, vascular injury and fibrosis. MR antagonists like eplerenone are used for treating heart failure, but their use is limited due to the compound class-inherent hyperkalemia risk. Here we present evidence that AZD9977, a first-in-class MR modulator shows cardio-renal protection despite a mechanism-based reduced liability to cause hyperkalemia. AZD9977 in vitro potency and binding mode to MR were characterized using reporter gene, binding, cofactor recruitment assays and X-ray crystallopgraphy. Organ protection was studied in uni-nephrectomised db/db mice and uni-nephrectomised rats administered aldosterone and high salt. Acute effects of single compound doses on urinary electrolyte excretion were tested in rats on a low salt diet. AZD9977 and eplerenone showed similar human MR in vitro potencies. Unlike eplerenone, AZD9977 is a partial MR antagonist due to its unique interaction pattern with MR, which results in a distinct recruitment of co-factor peptides when compared to eplerenone. AZD9977 dose dependently reduced albuminuria and improved kidney histopathology similar to eplerenone in db/db uni-nephrectomised mice and uni-nephrectomised rats. In acute testing, AZD9977 did not affect urinary Na+/K+ ratio, while eplerenone increased the Na+/K+ ratio dose dependently. AZD9977 is a selective MR modulator, retaining organ protection without acute effect on urinary electrolyte excretion. This predicts a reduced hyperkalemia risk and AZD9977 therefore has the potential to deliver a safe, efficacious treatment to patients prone to hyperkalemia.


Assuntos
Benzoatos/farmacologia , Antagonistas de Receptores de Mineralocorticoides/farmacologia , Oxazinas/farmacologia , Administração Oral , Aldosterona , Animais , Benzoatos/química , Benzoatos/farmacocinética , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos , Eplerenona , Humanos , Rim/efeitos dos fármacos , Rim/metabolismo , Rim/patologia , Masculino , Camundongos Mutantes , Antagonistas de Receptores de Mineralocorticoides/química , Antagonistas de Receptores de Mineralocorticoides/farmacocinética , Estrutura Molecular , Oxazinas/química , Oxazinas/farmacocinética , Potássio/urina , Ratos Sprague-Dawley , Receptores de Mineralocorticoides/genética , Receptores de Mineralocorticoides/metabolismo , Insuficiência Renal Crônica/tratamento farmacológico , Insuficiência Renal Crônica/metabolismo , Insuficiência Renal Crônica/patologia , Sódio/urina , Sódio na Dieta , Espironolactona/análogos & derivados , Espironolactona/química , Espironolactona/farmacocinética , Espironolactona/farmacologia
6.
Physiol Rep ; 5(5)2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28292877

RESUMO

The leptin-deficient BTBRob/ob mouse develops progressive albuminuria and morphological lesions similar to human diabetic nephropathy (DN), although whether glomerular hyperfiltration, a recognized feature of early DN that may contribute to renal injury, also occurs in this model is not known. Leptin replacement has been shown to reverse the signs of renal injury in this model, but in contrast, the expected renoprotection by angiotensin-converting enzyme (ACE) inhibition in BTBRob/ob mice seems to be limited. Therefore, to investigate the potential renal benefits of improved metabolic control in this model, we studied the effect of treatment with the dual peroxisome proliferator-activated receptor (PPAR) α/γ agonist AZD6610 and compared it with the ACE inhibitor enalapril. AZD6610 lowered plasma glucose and triglyceride concentrations and increased liver size, but had no significant effect in reducing albuminuria, whereas enalapril did have an effect. Nephrin and WT1 mRNA expression decreased in the kidneys of BTBRob/ob mice, consistent with podocyte injury and loss, but was unaffected by either drug treatment: at the protein level, both nephrin and WT1-positive cells per glomerulus were decreased. Mesangial matrix expansion was reduced in AZD6610-treated mice. GFR, measured by creatinine clearance, was increased in BTBRob/ob mice, but unaffected by either treatment. Unexpectedly, enalapril-treated mice showed intrarenal arteriolar vascular remodeling with concentric thickening of vessel walls. In summary, we found that the BTBRob/ob mouse model shows some similarities to the early changes seen in human DN, but that ACE inhibition or PPARα/γ agonism afforded limited or no kidney protection.


Assuntos
Inibidores da Enzima Conversora de Angiotensina/farmacologia , Glicemia/metabolismo , Diabetes Mellitus/metabolismo , Nefropatias Diabéticas/metabolismo , Rim/efeitos dos fármacos , PPAR alfa/antagonistas & inibidores , PPAR gama/antagonistas & inibidores , Animais , Pressão Sanguínea/efeitos dos fármacos , Modelos Animais de Doenças , Enalapril/farmacologia , Rim/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Sistema Renina-Angiotensina/efeitos dos fármacos , Sistema Renina-Angiotensina/fisiologia , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Triglicerídeos/sangue , Proteínas WT1
7.
Kidney Int ; 90(6): 1377-1385, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27665115

RESUMO

Transcutaneous measurement of the glomerular filtration rate (tGFR) is now frequently used in animal studies. tGFR allows consecutive measurements on the same animal, including multiple measurements on a daily basis, because no blood sampling is required. Here we derive and validate a novel kinetic model for the description of transcutaneously measured FITC-Sinistrin excretion kinetics. In contrast to standard 1- to 3-compartment models, our model covers the complete kinetic, including injection and distribution of the tracer in the plasma compartment. Because the model describes the complete progression of the measurement, it allows further refinement by correcting for baseline shifts observed occasionally during measurement. Possible reasons for shifts in the background signal include photo bleaching of the skin, autofluorescence, changes of physiological state of the animals during the measurements, or effects arising from the attachment of the measurement device. Using the new 3-compartment kinetic model with modulated baseline (tGFR3cp.b.m), tGFR measurements in rats can reach comparable precision as those from GFR measurements assessed using a gold standard technique based on constant infusion of a tracer. Moreover, the variability of simultaneous (parallel) measurements, as well as repeated tGFR measurements in the same animals, showed higher precision when tGFR3cp.b.m was compared with the 1-compartment tGFR1cp model.


Assuntos
Taxa de Filtração Glomerular , Modelos Animais , Modelos Teóricos , Animais , Biometria , Cinética , Masculino , Ratos Sprague-Dawley
8.
J Clin Endocrinol Metab ; 93(12): 4880-6, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18765514

RESUMO

CONTEXT: CCAAT/enhancer binding protein alpha (C/EBPalpha) is a transcription factor involved in adipogenesis and hepatic glucose and lipid metabolism. OBJECTIVE: The aim of the study was to test the hypothesis that adipose tissue C/EBPalpha regulates genes in lipid and glucose metabolism and to test for an association between a polymorphism in C/EBPalpha and metabolic parameters. DESIGN AND METHODS: Adipose tissue C/EBPalpha mRNA expression was analyzed at four time points in obese subjects with (n = 12) and without (n = 12) the metabolic syndrome during caloric restriction (450 kcal/d for 16 wk) using DNA microarray and real-time PCR. Adenoviral overexpression of C/EBPalpha was used to identify genes regulated by C/EBPalpha in 3T3-L1 cells. Association between a genetic variation in C/EBPalpha (rs12691) and metabolic parameters was tested in the Swedish Obese Subjects (SOS) study (n = 528) and replicated in Finnish individuals from the Botnia type 2 diabetes study (n = 4,866). RESULTS: During caloric restriction, adipose tissue C/EBPalpha mRNA levels were reduced in subjects with the metabolic syndrome (P = 0.024) and correlated to metabolic parameters. In 3T3-L1 cells, C/EBPalpha regulated the expression of adiponectin; hexokinase 2; lipoprotein lipase; diacylglycerol O-acyltransferase 1 and 2; ATP-binding cassette, sub-family D, member 2; acyl-coenzyme A synthetase long-chain family member 1; CD36; and hydroxysteroid 11-beta dehydrogenase 1. Furthermore, the expression of the human homologs, except adiponectin, correlated to C/EBPalpha mRNA levels in human adipose tissue. The AA genotype of rs12691 was associated with higher serum triglyceride levels in the SOS study (P = 0.022), and this association was replicated in the Botnia study (P = 0.041). CONCLUSIONS: Adipose tissue C/EBPalpha regulates several genes in glucose and lipid metabolism, and a genetic variation in C/EBPalpha is associated with triglycerides in two independent populations.


Assuntos
Tecido Adiposo/metabolismo , Tecido Adiposo/fisiologia , Proteína alfa Estimuladora de Ligação a CCAAT/genética , Proteína alfa Estimuladora de Ligação a CCAAT/fisiologia , Regulação da Expressão Gênica/fisiologia , Glucose/metabolismo , Metabolismo dos Lipídeos/genética , Metabolismo dos Lipídeos/fisiologia , Triglicerídeos/sangue , Células 3T3-L1 , Adenoviridae/genética , Animais , Restrição Calórica , Feminino , Finlândia , Variação Genética , Vetores Genéticos , Humanos , Masculino , Síndrome Metabólica/genética , Síndrome Metabólica/metabolismo , Camundongos , Análise em Microsséries , Pessoa de Meia-Idade , Obesidade/genética , Obesidade/metabolismo , Ratos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Suécia , Transfecção
9.
Biochem Biophys Res Commun ; 369(4): 1065-70, 2008 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-18339309

RESUMO

Glycerol-3-phosphate acyltransferase (GPAT) is involved in triacylglycerol (TAG) and phospholipid synthesis, catalyzing the first committed step. In order to further investigate the in vivo importance of the dominating mitochondrial variant, GPAT1, a novel GPAT1(-/-) mouse model was generated and studied. Female GPAT1(-/-) mice had reduced body weight-gain and adiposity when fed chow diet compared with littermate wild-type controls. Furthermore, GPAT1(-/-) females on chow diet showed decreased liver TAG content, plasma cholesterol and TAG levels and increased ex vivo liver fatty acid oxidation and plasma ketone bodies. However, these beneficial effects were abolished and the glucose tolerance tended to be impaired when GPAT1(-/-) females were fed a long-term high-fat diet (HFD). GPAT1-deficiency was not associated with altered whole body energy expenditure or respiratory exchange ratio. In addition, there were no changes in male GPAT1(-/-) mice fed either diet except for increased plasma ketone bodies on chow diet, indicating a gender-specific phenotype. Thus, GPAT1-deficiency does not protect against HFD-induced obesity, hepatic steatosis or whole body glucose intolerance.


Assuntos
Gorduras na Dieta/efeitos adversos , Fígado Gorduroso/etiologia , Intolerância à Glucose/etiologia , Glucose/metabolismo , Glicerol-3-Fosfato O-Aciltransferase/fisiologia , Obesidade/etiologia , Triglicerídeos/metabolismo , Animais , Colesterol/sangue , Dieta , Gorduras na Dieta/administração & dosagem , Modelos Animais de Doenças , Metabolismo Energético , Fígado Gorduroso/genética , Feminino , Intolerância à Glucose/genética , Glicerol-3-Fosfato O-Aciltransferase/genética , Homeostase , Masculino , Camundongos , Camundongos Mutantes , Mitocôndrias/enzimologia , Obesidade/genética , Triglicerídeos/análise , Aumento de Peso
10.
Arterioscler Thromb Vasc Biol ; 27(12): 2707-13, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17932310

RESUMO

OBJECTIVE: Previous studies have indicated that the hyperlipidemia and gene expression changes induced by a short-term high-fat diet (HFD) are mediated through the peroxisome proliferator-activated receptor gamma coactivator (PGC)-1beta, and that in vitro both PGC-1beta and PGC -1alpha increase PPARalpha-mediated transcriptional activities. Here, we examined the in vivo effects of these two coactivators in potentiating the lipid lowering properties of the PPARalpha agonist Wy14,643 (Wy). METHODS AND RESULTS: C57BL/6 mice were fed chow or HFD and transduced with adenoviruses encoding PGC-1alpha or PGC-1beta. On chow, hepatic PGC-1beta overexpression caused severe combined hyperlipidemia including elevated plasma apolipoprotein B levels. Hepatic triglyceride secretion, DGAT1, and FAT/CD36 expression were increased whereas PPARalpha and hepatic lipase mRNA levels were reduced. PGC-1beta overexpression blunted Wy-mediated changes in expression levels of PPARalpha and downstream genes. Furthermore, PGC-1beta did not potentiate Wy-stimulated fatty acid oxidation in primary hepatocytes. PGC-1beta and PGC-1alpha overexpression did not alter SREBP-1c, SREBP-1c target gene expression, nor hepatic triglyceride content. On HFD, PGC-1beta overexpression decreased hepatic SREBP-1c, yet increased FAS and ACCalpha mRNA and plasma triglyceride levels. CONCLUSIONS: Hepatic PGC-1beta overexpression caused combined hyperlipidemia independent of SREBP-1c activation. Hepatic PGC-1beta overexpression reduced the potentially beneficial effects of PPARalpha activation on gene expression. Thus, inhibition of hepatic PGC-1beta may provide a therapy for treating combined hyperlipidemia.


Assuntos
Anticolesterolemiantes/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Hiperlipidemia Familiar Combinada/prevenção & controle , Fígado/efeitos dos fármacos , PPAR alfa/agonistas , Pirimidinas/farmacologia , Transativadores/metabolismo , Acetil-CoA Carboxilase/metabolismo , Adenoviridae/genética , Animais , Anticolesterolemiantes/uso terapêutico , Apolipoproteínas B/sangue , Antígenos CD36/metabolismo , Células Cultivadas , Diacilglicerol O-Aciltransferase/metabolismo , Gorduras na Dieta/administração & dosagem , Modelos Animais de Doenças , Ácido Graxo Sintases/metabolismo , Ácidos Graxos/metabolismo , Vetores Genéticos , Hiperlipidemia Familiar Combinada/genética , Hiperlipidemia Familiar Combinada/metabolismo , Lipase/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos , Metabolismo dos Lipídeos/genética , Fígado/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , PPAR alfa/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Pirimidinas/uso terapêutico , RNA Mensageiro/metabolismo , Receptores de Lipoproteínas/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Transativadores/genética , Fatores de Transcrição , Transdução Genética , Triglicerídeos/metabolismo , Regulação para Cima
11.
Diabetes ; 56(3): 583-93, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17327425

RESUMO

The adipocyte-derived hormone adiponectin regulates glucose and lipid metabolism and influences the risk for developing obesity, type 2 diabetes, and cardiovascular disease. Adiponectin binds to two different seven-transmembrane domain receptors termed AdipoR1 and AdipoR2. To study the physiological importance of these receptors, AdipoR1 gene knockout mice (AdipoR1(-/-)) and AdipoR2 gene knockout mice (AdipoR2(-/-)) were generated. AdipoR1(-/-) mice showed increased adiposity associated with decreased glucose tolerance, spontaneous locomotor activity, and energy expenditure. However, AdipoR2(-/-) mice were lean and resistant to high-fat diet-induced obesity associated with improved glucose tolerance and higher spontaneous locomotor activity and energy expenditure and reduced plasma cholesterol levels. Thus, AdipoR1 and AdipoR2 are clearly involved in energy metabolism but have opposing effects.


Assuntos
Metabolismo Energético/fisiologia , Receptores de Superfície Celular/metabolismo , Proteínas Quinases Ativadas por AMP , Tecido Adiposo/citologia , Tecido Adiposo/metabolismo , Adiposidade/genética , Adiposidade/fisiologia , Animais , Peso Corporal/fisiologia , Encéfalo/patologia , Metabolismo Energético/genética , Comportamento Alimentar , Feminino , Glucose/metabolismo , Masculino , Camundongos , Camundongos Knockout , Atividade Motora/genética , Atividade Motora/fisiologia , Complexos Multienzimáticos/metabolismo , PPAR alfa/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Receptores de Adiponectina , Receptores de Superfície Celular/genética , Transdução de Sinais , Testículo/citologia , Fatores de Tempo
12.
FASEB J ; 20(3): 434-43, 2006 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-16507761

RESUMO

Glycerol-3-phosphate acyltransferase (GPAT) catalyzes the first committed step in triacylglycerol (TAG) and phospholipid biosynthesis. GPAT activity has been identified in both ER and mitochondrial subcellular fractions. The ER activity dominates in most tissues except in liver, where the mitochondrial isoform (mtGPAT) can constitute up to 50% of the total activity. To study the in vivo effects of hepatic mtGPAT overexpression, mice were transduced with adenoviruses expressing either murine mtGPAT or a catalytically inactive variant of the enzyme. Overexpressing mtGPAT resulted in massive 12- and 7-fold accumulation of liver TAG and diacylglycerol, respectively but had no effect on phospholipid or cholesterol ester content. Histological analysis showed extensive lipid accumulation in hepatocytes. Furthermore, mtGPAT transduction markedly increased adipocyte differentiation-related protein and stearoyl-CoA desaturase-1 (SCD-1) in the liver. In line with increased SCD-1 expression, 18:1 and 16:1 in the hepatic TAG fraction increased. In addition, mtGPAT overexpression decreased ex vivo fatty acid oxidation, increased liver TAG secretion rate 2-fold, and increased plasma TAG and cholesterol levels. These results support the hypothesis that increased hepatic mtGPAT activity associated with obesity and insulin resistance contributes to increased TAG biosynthesis and inhibition of fatty acid oxidation, responses that would promote hepatic steatosis and dyslipidemia.


Assuntos
Ácidos Graxos/metabolismo , Fígado Gorduroso/enzimologia , Glicerol-3-Fosfato O-Aciltransferase/biossíntese , Mitocôndrias Hepáticas/enzimologia , Triglicerídeos/metabolismo , Substituição de Aminoácidos , Animais , Carboidratos/biossíntese , Diglicerídeos/metabolismo , Indução Enzimática , Fígado Gorduroso/genética , Glicerol-3-Fosfato O-Aciltransferase/genética , Resistência à Insulina , Lipídeos/biossíntese , Masculino , Malonil Coenzima A/metabolismo , Espectrometria de Massas , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/metabolismo , Oxirredução , Fosfolipídeos/química , RNA Mensageiro/biossíntese , Proteínas Recombinantes de Fusão/fisiologia
13.
J Lipid Res ; 47(2): 329-40, 2006 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-16282640

RESUMO

Adipose differentiation-related protein (ADRP) is a lipid droplet-associated protein that is expressed in various tissues. In mice treated with the peroxisome proliferator-activated receptor alpha (PPARalpha) agonist Wy14,643 (Wy), hepatic mRNA and protein levels of ADRP as well as hepatic triglyceride content increased. Also in primary mouse hepatocytes, Wy increased ADRP expression and intracellular triglyceride mass. The triglyceride mass increased in spite of unchanged triglyceride biosynthesis and increased palmitic acid oxidation. However, Wy incubation decreased the secretion of newly synthesized triglycerides, whereas apolipoprotein B secretion increased. Thus, decreased availability of triglycerides for VLDL assembly could help to explain the cellular accumulation of triglycerides after Wy treatment. We hypothesized that this effect could be mediated by increased ADRP expression. Similar to PPARalpha activation, adenovirus-mediated ADRP overexpression in mouse hepatocytes enhanced cellular triglyceride mass and decreased the secretion of newly synthesized triglycerides. In ADRP-overexpressing cells, Wy incubation resulted in a further decrease in triglyceride secretion. This effect of Wy was not attributable to decreased cellular triglycerides after increased fatty acid oxidation because the triglyceride mass in Wy-treated ADRP-overexpressing cells was unchanged. In summary, PPARalpha activation prevents the availability of triglycerides for VLDL assembly and increases hepatic triglyceride content in part by increasing the expression of ADRP.


Assuntos
Hepatócitos/metabolismo , Proteínas de Membrana/metabolismo , PPAR alfa/metabolismo , Triglicerídeos/metabolismo , Acil-CoA Desidrogenase de Cadeia Longa/genética , Acil-CoA Oxidase/genética , Animais , Apolipoproteína B-100 , Apolipoproteína B-48 , Apolipoproteínas B/metabolismo , Carnitina O-Palmitoiltransferase/genética , Gorduras na Dieta/administração & dosagem , Gorduras na Dieta/farmacologia , Expressão Gênica/efeitos dos fármacos , Expressão Gênica/genética , Hepatócitos/efeitos dos fármacos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Oxirredução , PPAR alfa/antagonistas & inibidores , PPAR alfa/genética , Ácido Palmítico/metabolismo , Perilipina-2 , Proliferadores de Peroxissomos/farmacologia , Pirimidinas/farmacologia , Transfecção , Triglicerídeos/biossíntese
14.
J Lipid Res ; 45(7): 1279-88, 2004 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15102885

RESUMO

Glycerol-3-phosphate acyltransferase (GPAT) catalyses the first committed step in glycerolipid biosynthesis. The mitochondrial isoform (mtGPAT) is mainly expressed in liver, where it is highly regulated, indicating that mtGPAT may have a unique role in hepatic fatty acid metabolism. Because both mtGPAT and carnitine palmitoyl transferase-1 are located on the outer mitochondrial membrane, we hypothesized that mtGPAT directs fatty acyl-CoA away from beta-oxidation and toward glycerolipid synthesis. Adenoviral-mediated overexpression of murine mtGPAT in primary cultures of rat hepatocytes increased mtGPAT activity 2.7-fold with no compensatory effect on microsomal GPAT activity. MtGPAT overexpression resulted in a dramatic 80% reduction in fatty acid oxidation and a significant increase in hepatic diacylglycerol and phospholipid biosynthesis. Following lipid loading of the cells, intracellular triacylglycerol biosynthesis was also induced by mtGPAT overexpression. Changing an invariant aspartic acid residue to a glycine [D235G] in mtGPAT resulted in an inactive enzyme, which helps define the active site required for mammalian mtGPAT function. To determine if obesity increases hepatic mtGPAT activity, two models of rodent obesity were examined and shown to have >2-fold increased enzyme activity. Overall, these results support the concept that increased hepatic mtGPAT activity associated with obesity positively contributes to lipid disorders by reducing oxidative processes and promoting de novo glycerolipid synthesis.


Assuntos
Ácidos Graxos/metabolismo , Glicerídeos/biossíntese , Glicerol-3-Fosfato O-Aciltransferase/fisiologia , Hepatócitos/metabolismo , Mitocôndrias Hepáticas/metabolismo , Acil Coenzima A , Animais , Sítios de Ligação , Células Cultivadas , Glicerol-3-Fosfato O-Aciltransferase/genética , Hepatócitos/enzimologia , Hiperlipidemias/etiologia , Camundongos , Mitocôndrias Hepáticas/enzimologia , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/fisiologia , Obesidade/etiologia , Oxirredução , Fosfolipídeos/biossíntese , Ratos , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...