Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2023 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-37547005

RESUMO

RNA sequencing and genetic data support spleen tyrosine kinase (SYK) and high affinity immunoglobulin epsilon receptor subunit gamma (FCER1G) as putative targets to be modulated for Alzheimer's disease (AD) therapy. FCER1G is a component of Fc receptor complexes that contain an immunoreceptor tyrosine-based activation motif (ITAM). SYK interacts with the Fc receptor by binding to doubly phosphorylated ITAM (p-ITAM) via its two tandem SH2 domains (SYK-tSH2). Interaction of the FCER1G p-ITAM with SYK-tSH2 enables SYK activation via phosphorylation. Since SYK activation is reported to exacerbate AD pathology, we hypothesized that disruption of this interaction would be beneficial for AD patients. Herein, we developed biochemical and biophysical assays to enable the discovery of small molecules that perturb the interaction between the FCER1G p-ITAM and SYK-tSH2. We identified two distinct chemotypes using a high-throughput screen (HTS) and orthogonally assessed their binding. Both chemotypes covalently modify SYK-tSH2 and inhibit its interaction with FCER1G p-ITAM.

2.
Assay Drug Dev Technol ; 17(7): 310-321, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31634018

RESUMO

Relief from chronic pain continues to represent a large unmet need. The voltage-gated potassium channel Kv7.2/7.3, also known as KCNQ2/3, is a key contributor to the control of resting membrane potential and excitability in nociceptive neurons and represents a promising target for potential therapeutics. In this study, we present a medium throughput electrophysiological assay for the identification and characterization of modulators of Kv7.2/7.3 channels, using the IonWorks Barracuda™ automated voltage clamp platform. The assay combines a family of voltage steps used to construct conductance curves with a unique analysis method. Kv7.2/7.3 modulators shift the activation voltage and/or change the maximal conductance of the current, and both parameters have been used to quantify compound mediated effects. Both effects are expected to modulate neuronal excitability in vivo. The analysis method described assigns a single potency value that combines changes in activation voltage and maximal conductance and is expected to predict compound mediated changes in excitability.


Assuntos
Aminopiridinas/análise , Carbamatos/análise , Desenvolvimento de Medicamentos , Ensaios de Triagem em Larga Escala/instrumentação , Técnicas de Patch-Clamp/instrumentação , Fenilenodiaminas/análise , Aminopiridinas/farmacologia , Carbamatos/farmacologia , Células Cultivadas , Fenômenos Eletrofisiológicos , Células HEK293 , Humanos , Canal de Potássio KCNQ2/metabolismo , Canal de Potássio KCNQ3/metabolismo , Fenilenodiaminas/farmacologia
4.
Mol Pharmacol ; 73(6): 1838-43, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18367540

RESUMO

Sazetidine-A has been recently proposed to be a "silent desensitizer" of alpha4beta2 nicotinic acetylcholine receptors (nAChRs), implying that it desensitizes alpha4beta2 nAChRs without first activating them. This unusual pharmacological property of sazetidine-A makes it, potentially, an excellent research tool to distinguish between the role of activation and desensitization of alpha4beta2 nAChRs in mediating the central nervous system effects of nicotine itself, as well as those of new nicotinic drugs. We were surprised to find that sazetidine-A potently and efficaciously stimulated nAChR-mediated dopamine release from rat striatal slices, which is mediated by alpha4beta2(*) and alpha6beta2(*) subtypes of nAChR. The agonist effects on native striatal nAChRs prompted us to re-examine the effects of sazetidine-A on recombinant alpha4beta2 nAChRs in more detail. We expressed the two alternative stoichiometries of alpha4beta2 nAChR in Xenopus laevis oocytes and investigated the agonist properties of sazetidine-A on both alpha4(2)beta2(3) and alpha4(3)beta2(2) nAChRs. We found that sazetidine-A potently activated both stoichiometries of alpha4beta2 nAChR: it was a full agonist on alpha4(2)beta2(3) nAChRs, whereas it had an efficacy of only 6% on alpha4(3)beta2(2) nAChRs. In contrast to what has been published before, we therefore conclude that sazetidine-A is an agonist of native and recombinant alpha4beta2 nAChRs but shows differential efficacy on alpha4beta2 nAChRs subtypes.


Assuntos
Azetidinas/metabolismo , Agonistas Nicotínicos/metabolismo , Piridinas/metabolismo , Receptores Nicotínicos/genética , Receptores Nicotínicos/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Animais , Azetidinas/farmacologia , Linhagem Celular , Relação Dose-Resposta a Droga , Feminino , Humanos , Masculino , Agonistas Nicotínicos/farmacologia , Piridinas/farmacologia , Ratos , Xenopus laevis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA