Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cancer Metab ; 11(1): 18, 2023 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-37858256

RESUMO

BACKGROUND: To support proliferation and survival within a challenging microenvironment, cancer cells must reprogramme their metabolism. As such, targeting cancer cell metabolism is a promising therapeutic avenue. However, identifying tractable nodes of metabolic vulnerability in cancer cells is challenging due to their metabolic plasticity. Identification of effective treatment combinations to counter this is an active area of research. Aspirin has a well-established role in cancer prevention, particularly in colorectal cancer (CRC), although the mechanisms are not fully understood. METHODS: We generated a model to investigate the impact of long-term (52 weeks) aspirin exposure on CRC cells, which has allowed us comprehensively characterise the metabolic impact of long-term aspirin exposure (2-4mM for 52 weeks) using proteomics, Seahorse Extracellular Flux Analysis and Stable Isotope Labelling (SIL). Using this information, we were able to identify nodes of metabolic vulnerability for further targeting, investigating the impact of combining aspirin with metabolic inhibitors in vitro and in vivo. RESULTS: We show that aspirin regulates several enzymes and transporters of central carbon metabolism and results in a reduction in glutaminolysis and a concomitant increase in glucose metabolism, demonstrating reprogramming of nutrient utilisation. We show that aspirin causes likely compensatory changes that render the cells sensitive to the glutaminase 1 (GLS1) inhibitor-CB-839. Of note given the clinical interest, treatment with CB-839 alone had little effect on CRC cell growth or survival. However, in combination with aspirin, CB-839 inhibited CRC cell proliferation and induced apoptosis in vitro and, importantly, reduced crypt proliferation in Apcfl/fl mice in vivo. CONCLUSIONS: Together, these results show that aspirin leads to significant metabolic reprogramming in colorectal cancer cells and raises the possibility that aspirin could significantly increase the efficacy of metabolic cancer therapies in CRC.

2.
Explor Target Antitumor Ther ; 4(4): 600-615, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37720350

RESUMO

Aspirin is a well-known nonsteroidal anti-inflammatory drug (NSAID) that has a recognized role in cancer prevention as well as evidence to support its use as an adjuvant for cancer treatment. Importantly there has been an increasing number of studies contributing to the mechanistic understanding of aspirins' anti-tumour effects and these studies continue to inform the potential clinical use of aspirin for both the prevention and treatment of cancer. This review focuses on the emerging role of aspirin as a regulator of metabolic reprogramming, an essential "hallmark of cancer" required to support the increased demand for biosynthetic intermediates needed for sustained proliferation. Cancer cells frequently undergo metabolic rewiring driven by oncogenic pathways such as hypoxia-inducible factor (HIF), wingless-related integration site (Wnt), mammalian target of rapamycin (mTOR), and nuclear factor kappa light chain enhancer of activated B cells (NF-κB), which supports the increased proliferative rate as tumours develop and progress. Reviewed here, cellular metabolic reprogramming has been identified as a key mechanism of action of aspirin and include the regulation of key metabolic drivers, the regulation of enzymes involved in glycolysis and glutaminolysis, and altered nutrient utilisation upon aspirin exposure. Importantly, as aspirin treatment exposes metabolic vulnerabilities in tumour cells, there is an opportunity for the use of aspirin in combination with specific metabolic inhibitors in particular, glutaminase (GLS) inhibitors currently in clinical trials such as telaglenastat (CB-839) and IACS-6274 for the treatment of colorectal and potentially other cancers. The increasing evidence that aspirin impacts metabolism in cancer cells suggests that aspirin could provide a simple, relatively safe, and cost-effective way to target this important hallmark of cancer. Excitingly, this review highlights a potential new role for aspirin in improving the efficacy of a new generation of metabolic inhibitors currently undergoing clinical investigation.

3.
PLoS Comput Biol ; 19(8): e1011386, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37578984

RESUMO

Organoids offer a powerful model to study cellular self-organisation, the growth of specific tissue morphologies in-vitro, and to assess potential medical therapies. However, the intrinsic mechanisms of these systems are not entirely understood yet, which can result in variability of organoids due to differences in culture conditions and basement membrane extracts used. Improving the standardisation of organoid cultures is essential for their implementation in clinical protocols. Developing tools to assess and predict the behaviour of these systems may produce a more robust and standardised biological model to perform accurate clinical studies. Here, we developed an algorithm to automate crypt-like structure counting on intestinal organoids in both in-vitro and in-silico images. In addition, we modified an existing two-dimensional agent-based mathematical model of intestinal organoids to better describe the system physiology, and evaluated its ability to replicate budding structures compared to new experimental data we generated. The crypt-counting algorithm proved useful in approximating the average number of budding structures found in our in-vitro intestinal organoid culture images on days 3 and 7 after seeding. Our changes to the in-silico model maintain the potential to produce simulations that replicate the number of budding structures found on days 5 and 7 of in-vitro data. The present study aims to aid in quantifying key morphological structures and provide a method to compare both in-vitro and in-silico experiments. Our results could be extended later to 3D in-silico models.


Assuntos
Intestinos , Células-Tronco , Simulação por Computador , Organoides/fisiologia , Mucosa Intestinal
4.
EBioMedicine ; 91: 104510, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37086649

RESUMO

BACKGROUND: The causal relevance of polyunsaturated fatty acids (PUFAs) for risk of site-specific cancers remains uncertain. METHODS: Using a Mendelian randomization (MR) framework, we assessed the causal relevance of PUFAs for risk of cancer in European and East Asian ancestry individuals. We defined the primary exposure as PUFA desaturase activity, proxied by rs174546 at the FADS locus. Secondary exposures were defined as omega 3 and omega 6 PUFAs that could be proxied by genetic polymorphisms outside the FADS region. Our study used summary genetic data on 10 PUFAs and 67 cancers, corresponding to 562,871 cases and 1,619,465 controls, collected by the Fatty Acids in Cancer Mendelian Randomization Collaboration. We estimated odds ratios (ORs) for cancer per standard deviation increase in genetically proxied PUFA exposures. FINDINGS: Genetically elevated PUFA desaturase activity was associated (P < 0.0007) with higher risk (OR [95% confidence interval]) of colorectal cancer (1.09 [1.07-1.11]), esophageal squamous cell carcinoma (1.16 [1.06-1.26]), lung cancer (1.06 [1.03-1.08]) and basal cell carcinoma (1.05 [1.02-1.07]). There was little evidence for associations with reproductive cancers (OR = 1.00 [95% CI: 0.99-1.01]; Pheterogeneity = 0.25), urinary system cancers (1.03 [0.99-1.06], Pheterogeneity = 0.51), nervous system cancers (0.99 [0.95-1.03], Pheterogeneity = 0.92) or blood cancers (1.01 [0.98-1.04], Pheterogeneity = 0.09). Findings for colorectal cancer and esophageal squamous cell carcinoma remained compatible with causality in sensitivity analyses for violations of assumptions. Secondary MR analyses highlighted higher omega 6 PUFAs (arachidonic acid, gamma-linolenic acid and dihomo-gamma-linolenic acid) as potential mediators. PUFA biosynthesis is known to interact with aspirin, which increases risk of bleeding and inflammatory bowel disease. In a phenome-wide MR study of non-neoplastic diseases, we found that genetic lowering of PUFA desaturase activity, mimicking a hypothetical intervention to reduce cancer risk, was associated (P < 0.0006) with increased risk of inflammatory bowel disease but not bleeding. INTERPRETATION: The PUFA biosynthesis pathway may be an intervention target for prevention of colorectal cancer and esophageal squamous cell carcinoma but with potential for increased risk of inflammatory bowel disease. FUNDING: Cancer Resesrch UK (C52724/A20138, C18281/A19169). UK Medical Research Council (MR/P014054/1). National Institute for Health Research (NIHR202411). UK Medical Research Council (MC_UU_00011/1, MC_UU_00011/3, MC_UU_00011/6, and MC_UU_00011/4). National Cancer Institute (R00 CA215360). National Institutes of Health (U01 CA164973, R01 CA60987, R01 CA72520, U01 CA74806, R01 CA55874, U01 CA164973 and U01 CA164973).


Assuntos
Neoplasias Colorretais , Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Ácidos Graxos Ômega-3 , Doenças Inflamatórias Intestinais , Humanos , Ácidos Graxos Dessaturases/genética , Ácidos Graxos Dessaturases/metabolismo , Ácidos Graxos Insaturados/metabolismo , Polimorfismo de Nucleotídeo Único
5.
Biofabrication ; 15(1)2022 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-36321254

RESUMO

We describe the development of a high-throughput bioprinted colorectal cancer (CRC) spheroid platform with high levels of automation, information content, and low cell number requirement. This is achieved via the formulation of a hydrogel bioink with a compressive Young's modulus that is commensurate with that of colonic tissue (1-3 kPa), which supports exponential growth of spheroids from a wide range of CRC cell lines. The resulting spheroids display tight cell-cell junctions, bioink matrix-cell interactions and necrotic hypoxic cores. By combining high content light microscopy imaging and processing with rapid multiwell plate bioprinting, dose-response profiles are generated from CRC spheroids challenged with oxaliplatin (OX) and fluorouracil (5FU), as well as radiotherapy. Bioprinted CRC spheroids are shown to exhibit high levels of chemoresistance relative to cell monolayers, and OX was found to be significantly less effective against tumour spheroids than in monolayer culture, when compared to 5FU.


Assuntos
Bioimpressão , Neoplasias Colorretais , Humanos , Esferoides Celulares , Bioimpressão/métodos , Fluoruracila , Linhagem Celular , Oxaliplatina
6.
DNA Repair (Amst) ; 115: 103331, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35468497

RESUMO

The proto-oncogene BCL-3 is upregulated in a subset of colorectal cancers (CRC), where it has been shown to enhance tumour cell survival. However, although increased expression correlates with poor patient prognosis, the role of BCL-3 in determining therapeutic response remains largely unknown. In this study, we use combined approaches in multiple cell lines and pre-clinical mouse models to investigate the function of BCL-3 in the DNA damage response. We show that suppression of BCL-3 increases γH2AX foci formation and decreases homologous recombination in CRC cells, resulting in reduced RAD51 foci number and increased sensitivity to PARP inhibition. Importantly, a similar phenotype is seen in Bcl3-/- mice, where Bcl3-/- mouse crypts also exhibit sensitivity to DNA damage with increased γH2AX foci compared to wild type mice. Additionally, Apc.Kras-mutant x Bcl3-/- mice are more sensitive to cisplatin chemotherapy compared to wild type mice. Taken together, our results identify BCL-3 as a regulator of the cellular response to DNA damage and suggests that elevated BCL-3 expression, as observed in CRC, could increase resistance of tumour cells to DNA damaging agents including radiotherapy. These findings offer a rationale for targeting BCL-3 in CRC as an adjunct to conventional therapies and suggest that BCL-3 expression in tumours could be a useful biomarker in stratification of rectal cancer patients for neo-adjuvant chemoradiotherapy.


Assuntos
Neoplasias Colorretais , Animais , Linhagem Celular Tumoral , Cisplatino/uso terapêutico , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Dano ao DNA , Recombinação Homóloga , Humanos , Camundongos
7.
Nature ; 594(7863): 430-435, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34079124

RESUMO

The tumour suppressor APC is the most commonly mutated gene in colorectal cancer. Loss of Apc in intestinal stem cells drives the formation of adenomas in mice via increased WNT signalling1, but reduced secretion of WNT ligands increases the ability of Apc-mutant intestinal stem cells to colonize a crypt (known as fixation)2. Here we investigated how Apc-mutant cells gain a clonal advantage over wild-type counterparts to achieve fixation. We found that Apc-mutant cells are enriched for transcripts that encode several secreted WNT antagonists, with Notum being the most highly expressed. Conditioned medium from Apc-mutant cells suppressed the growth of wild-type organoids in a NOTUM-dependent manner. Furthermore, NOTUM-secreting Apc-mutant clones actively inhibited the proliferation of surrounding wild-type crypt cells and drove their differentiation, thereby outcompeting crypt cells from the niche. Genetic or pharmacological inhibition of NOTUM abrogated the ability of Apc-mutant cells to expand and form intestinal adenomas. We identify NOTUM as a key mediator during the early stages of mutation fixation that can be targeted to restore wild-type cell competitiveness and provide preventative strategies for people at a high risk of developing colorectal cancer.


Assuntos
Competição entre as Células , Transformação Celular Neoplásica , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Esterases/metabolismo , Genes APC , Mutação , Adenoma/genética , Adenoma/patologia , Proteína da Polipose Adenomatosa do Colo/genética , Animais , Competição entre as Células/genética , Diferenciação Celular , Proliferação de Células , Transformação Celular Neoplásica/genética , Meios de Cultivo Condicionados , Progressão da Doença , Esterases/antagonistas & inibidores , Esterases/genética , Feminino , Humanos , Ligantes , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Organoides/citologia , Organoides/metabolismo , Organoides/patologia , Células-Tronco/citologia , Células-Tronco/metabolismo , Proteínas Wnt/metabolismo , Via de Sinalização Wnt
8.
Carcinogenesis ; 41(3): 249-256, 2020 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-31930327

RESUMO

With its identification as a proto-oncogene in chronic lymphocytic leukaemia and central role in regulating NF-κB signalling, it is perhaps not surprising that there have been an increasing number of studies in recent years investigating the role of BCL-3 (B-Cell Chronic Lymphocytic Leukaemia/Lymphoma-3) in a wide range of human cancers. Importantly, this work has begun to shed light on our mechanistic understanding of the function of BCL-3 in tumour promotion and progression. Here, we summarize the current understanding of BCL-3 function in relation to the characteristics or traits associated with tumourigenesis, termed 'Hallmarks of Cancer'. With the focus on colorectal cancer, a major cause of cancer related mortality in the UK, we describe the evidence that potentially explains why increased BCL-3 expression is associated with poor prognosis in colorectal cancer. As well as promoting tumour cell proliferation, survival, invasion and metastasis, a key emerging function of this proto-oncogene is the regulation of the tumour response to inflammation. We suggest that BCL-3 represents an exciting new route for targeting the Hallmarks of Cancer; in particular by limiting the impact of the enabling hallmarks of tumour promoting inflammation and cell plasticity. As BCL-3 has been reported to promote the stem-like potential of cancer cells, we suggest that targeting BCL-3 could increase the tumour response to conventional treatment, reduce the chance of relapse and hence improve the prognosis for cancer patients.


Assuntos
Proteína 3 do Linfoma de Células B/genética , Carcinogênese/genética , Neoplasias Colorretais/genética , Recidiva Local de Neoplasia/genética , Proliferação de Células/genética , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/patologia , Regulação Neoplásica da Expressão Gênica/genética , Humanos , NF-kappa B/genética , Invasividade Neoplásica/genética , Invasividade Neoplásica/patologia , Recidiva Local de Neoplasia/patologia , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Prognóstico , Proto-Oncogene Mas , Transdução de Sinais/genética
9.
Dis Model Mech ; 12(3)2019 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-30792270

RESUMO

To decrease bowel cancer incidence and improve survival, we need to understand the mechanisms that drive tumorigenesis. Recently, B-cell lymphoma 3 (BCL-3; a key regulator of NF-κB signalling) has been recognised as an important oncogenic player in solid tumours. Although reported to be overexpressed in a subset of colorectal cancers (CRCs), the role of BCL-3 expression in colorectal tumorigenesis remains poorly understood. Despite evidence in the literature that BCL-3 may interact with ß-catenin, it is perhaps surprising, given the importance of deregulated Wnt/ß-catenin/T-cell factor (TCF) signalling in colorectal carcinogenesis, that the functional significance of this interaction is not known. Here, we show for the first time that BCL-3 acts as a co-activator of ß-catenin/TCF-mediated transcriptional activity in CRC cell lines and that this interaction is important for Wnt-regulated intestinal stem cell gene expression. We demonstrate that targeting BCL-3 expression (using RNA interference) reduced ß-catenin/TCF-dependent transcription and the expression of intestinal stem cell genes LGR5 and ASCL2 In contrast, the expression of canonical Wnt targets Myc and cyclin D1 remained unchanged. Furthermore, we show that BCL-3 increases the functional stem cell phenotype, as shown by colorectal spheroid and tumoursphere formation in 3D culture conditions. We propose that BCL-3 acts as a driver of the stem cell phenotype in CRC cells, potentially promoting tumour cell plasticity and therapeutic resistance. As recent reports highlight the limitations of directly targeting cancer stem cells (CSCs), we believe that identifying and targeting drivers of stem cell plasticity have significant potential as new therapeutic targets.This article has an associated First Person interview with the first author of the paper.


Assuntos
Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Proteínas Proto-Oncogênicas/metabolismo , Fatores de Transcrição/metabolismo , Via de Sinalização Wnt , Proteína 3 do Linfoma de Células B , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Regulação Neoplásica da Expressão Gênica , Genes Reporter , Humanos , Fator 1 de Ligação ao Facilitador Linfoide/metabolismo , Fenótipo , Ligação Proteica , Transporte Proteico , Proteínas Proto-Oncogênicas/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Esferoides Celulares/metabolismo , Esferoides Celulares/patologia , Fatores de Transcrição TCF/metabolismo , Fatores de Transcrição/genética , beta Catenina/metabolismo
10.
Haematologica ; 104(7): 1365-1377, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30630973

RESUMO

Canonical Wnt/ß-catenin signaling is frequently dysregulated in myeloid leukemias and is implicated in leukemogenesis. Nuclear-localized ß-catenin is indicative of active Wnt signaling and is frequently observed in acute myeloid leukemia (AML) patients; however, some patients exhibit little or no nuclear ß-catenin even where cytosolic ß-catenin is abundant. Control of the subcellular localization of ß-catenin therefore represents an additional mechanism regulating Wnt signaling in hematopoietic cells. To investigate the factors mediating the nuclear-localization of ß-catenin, we carried out the first nuclear/cytoplasmic proteomic analysis of the ß-catenin interactome in myeloid leukemia cells and identified putative novel ß-catenin interactors. Comparison of interacting factors between Wnt-responsive cells (high nuclear ß-catenin) versus Wnt-unresponsive cells (low nuclear ß-catenin) suggested the transcriptional partner, LEF-1, could direct the nuclear-localization of ß-catenin. The relative levels of nuclear LEF-1 and ß-catenin were tightly correlated in both cell lines and in primary AML blasts. Furthermore, LEF-1 knockdown perturbed ß-catenin nuclear-localization and transcriptional activation in Wnt-responsive cells. Conversely, LEF-1 overexpression was able to promote both nuclear-localization and ß-catenin-dependent transcriptional responses in previously Wnt-unresponsive cells. This is the first ß-catenin interactome study in hematopoietic cells and reveals LEF-1 as a mediator of nuclear ß- catenin level in human myeloid leukemia.


Assuntos
Núcleo Celular/metabolismo , Leucemia Mieloide Aguda/metabolismo , Fator 1 de Ligação ao Facilitador Linfoide/metabolismo , Síndromes Mielodisplásicas/metabolismo , Proteoma/análise , Proteína Wnt1/metabolismo , beta Catenina/metabolismo , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patologia , Fator 1 de Ligação ao Facilitador Linfoide/antagonistas & inibidores , Fator 1 de Ligação ao Facilitador Linfoide/genética , Síndromes Mielodisplásicas/patologia , Domínios e Motivos de Interação entre Proteínas , RNA Interferente Pequeno/genética , Ativação Transcricional , Células Tumorais Cultivadas , Proteína Wnt1/genética , beta Catenina/genética
11.
EMBO Mol Med ; 10(11)2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30143543

RESUMO

Hypoxia is a hallmark of solid tumours and a key physiological feature distinguishing cancer from normal tissue. However, a major challenge remains in identifying tractable molecular targets that hypoxic cancer cells depend on for survival. Here, we used SILAC-based proteomics to identify the orphan G protein-coupled receptor GPRC5A as a novel hypoxia-induced protein that functions to protect cancer cells from apoptosis during oxygen deprivation. Using genetic approaches in vitro and in vivo, we reveal HIFs as direct activators of GPRC5A transcription. Furthermore, we find that GPRC5A is upregulated in the colonic epithelium of patients with mesenteric ischaemia, and in colorectal cancers high GPRC5A correlates with hypoxia gene signatures and poor clinical outcomes. Mechanistically, we show that GPRC5A enables hypoxic cell survival by activating the Hippo pathway effector YAP and its anti-apoptotic target gene BCL2L1 Importantly, we show that the apoptosis induced by GPRC5A depletion in hypoxia can be rescued by constitutively active YAP. Our study identifies a novel HIF-GPRC5A-YAP axis as a critical mediator of the hypoxia-induced adaptive response and a potential target for cancer therapy.


Assuntos
Adaptação Fisiológica , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Neoplasias/patologia , Fosfoproteínas/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais , Adaptação Fisiológica/efeitos dos fármacos , Animais , Antígenos de Neoplasias/metabolismo , Anidrase Carbônica IX/metabolismo , Hipóxia Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Doxiciclina/farmacologia , Humanos , Camundongos Endogâmicos C57BL , Modelos Biológicos , Neoplasias/genética , Transdução de Sinais/efeitos dos fármacos , Fatores de Transcrição , Transcrição Gênica/efeitos dos fármacos , Proteínas de Sinalização YAP , Peixe-Zebra
12.
Clin Orthop Relat Res ; 476(2): 279-290, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29529656

RESUMO

BACKGROUND: Crosslinked polyethylene (XLPE) liners used for primary THA have demonstrated lower wear rates than noncrosslinked, conventional polyethylene (CPE) liners through the first decade of clinical service. However, little high-quality evidence is currently available regarding the second decade performance of these implants and it remains uncertain whether the onset of osteolysis has simply been delayed or if the wear associated with XLPE liners will remain low enough that osteolysis will not occur. It is also unknown how the potential reductions in wear and osteolysis will influence long-term revision rates. QUESTIONS/PURPOSES: Do patients who underwent THA with XLPE liners demonstrate (1) a lower rate of revision for wear-related complications; (2) a reduced wear rate; and (3) a lower frequency of osteolysis compared with those with CPE liners? METHODS: Over an 18-month period from 1999 to 2000, 226 patients who had 236 primary THAs consented to participate in a randomized controlled trial conducted at one institution. To be eligible for intraoperative randomization, patients had to be implanted with a 28-mm cobalt-chrome alloy femoral head, a 4-mm lateralized liner, and the same cup and stem design. Six patients with six THAs were excluded intraoperatively because they did not receive study components for reasons unrelated to the liner material. The remaining 230 THAs among 220 patients were randomized to XLPE liners or CPE liners. The mean age at surgery was 62 ± 11 years and there were no differences in age, gender, or body mass index among the groups. There was no differential loss to followup between the study groups; among patients not known to be deceased or having undergone revision, minimum 14-year radiographic followup is available for 85 THAs including 46 with XLPE and 39 with CPE liners. Polyethylene wear was measured radiographically using Martell's Hip Analysis Suite and areas of osteolysis were evaluated before revision or at most recent followup. Revision rates at 15 years using reoperation for any reason and revision for wear or osteolysis were calculated using cumulative incidence considering patient death as a competing risk. RESULTS: The cumulative incidence of revision at 15 years using reoperation for wear-related complications as an endpoint was lower in the XLPE group than the CPE group (0%, 95% confidence interval [CI], 0%-0% versus 12%, 95% CI, 7%-19%; p < 0.001). Among unrevised THAs with minimum 14-year radiographic followup, the mean steady-state linear wear rate for THAs with XLPE liners was lower than the mean linear wear rate for the THAs with CPE liners (0.03 ± 0.05 versus 0.17 ± 0.09 mm/year; mean difference, 0.14; 95% CI, 0.11-0.17; p < 0.001). Osteolysis of any size was noted among 9% (four of 46) of the hips in the XLPE group and 46% (18 of 39) of the hips in the CPE group (odds ratio, 0.19; 95% CI, 0.07-0.51; p < 0.001). CONCLUSIONS: This randomized study with followup into the second decade demonstrated reductions in revision, wear, and osteolysis associated with the use of XLPE. The low wear rates and absence of any mechanical failures among the XLPE liners at long-term followup affirm the durability of these components that did not incorporate antioxidants. Although osteolysis has not been eliminated, it occurs infrequently and has not caused any clinical problems to date. LEVEL OF EVIDENCE: Level I, therapeutic study.


Assuntos
Artroplastia de Quadril/efeitos adversos , Artroplastia de Quadril/instrumentação , Reagentes de Ligações Cruzadas/química , Articulação do Quadril/cirurgia , Prótese de Quadril , Osteólise/prevenção & controle , Polietileno/química , Falha de Prótese , Idoso , Feminino , Articulação do Quadril/diagnóstico por imagem , Articulação do Quadril/fisiopatologia , Humanos , Masculino , Pessoa de Meia-Idade , Osteólise/diagnóstico por imagem , Osteólise/etiologia , Osteólise/cirurgia , Estudos Prospectivos , Desenho de Prótese , Fatores de Proteção , Reoperação , Fatores de Risco , Estresse Mecânico , Fatores de Tempo , Resultado do Tratamento , Virginia
13.
Gut ; 65(7): 1151-64, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26033966

RESUMO

OBJECTIVE: Colorectal cancer remains the fourth most common cause of cancer-related mortality worldwide. Here we investigate the role of nuclear factor-κB (NF-κB) co-factor B-cell CLL/lymphoma 3 (BCL-3) in promoting colorectal tumour cell survival. DESIGN: Immunohistochemistry was carried out on 47 tumour samples and normal tissue from resection margins. The role of BCL-3/NF-κB complexes on cell growth was studied in vivo and in vitro using an siRNA approach and exogenous BCL-3 expression in colorectal adenoma and carcinoma cells. The question whether BCL-3 activated the AKT/protein kinase B (PKB) pathway in colorectal tumour cells was addressed by western blotting and confocal microscopy, and the ability of 5-aminosalicylic acid (5-ASA) to suppress BCL-3 expression was also investigated. RESULTS: We report increased BCL-3 expression in human colorectal cancers and demonstrate that BCL-3 expression promotes tumour cell survival in vitro and tumour growth in mouse xenografts in vivo, dependent on interaction with NF-κB p50 or p52 homodimers. We show that BCL-3 promotes cell survival under conditions relevant to the tumour microenvironment, protecting both colorectal adenoma and carcinoma cells from apoptosis via activation of the AKT survival pathway: AKT activation is mediated via both PI3K and mammalian target of rapamycin (mTOR) pathways, leading to phosphorylation of downstream targets GSK-3ß and FoxO1/3a. Treatment with 5-ASA suppressed BCL-3 expression in colorectal cancer cells. CONCLUSIONS: Our study helps to unravel the mechanism by which BCL-3 is linked to poor prognosis in colorectal cancer; we suggest that targeting BCL-3 activity represents an exciting therapeutic opportunity potentially increasing the sensitivity of tumour cells to conventional therapy.


Assuntos
Neoplasias Colorretais/química , NF-kappa B/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas/análise , Proteínas Proto-Oncogênicas/metabolismo , Transdução de Sinais , Fatores de Transcrição/análise , Fatores de Transcrição/metabolismo , Animais , Anti-Inflamatórios não Esteroides/farmacologia , Apoptose , Proteína 3 do Linfoma de Células B , Proliferação de Células , Sobrevivência Celular/efeitos dos fármacos , Colo/química , Neoplasias Colorretais/patologia , Células HCT116 , Humanos , Mesalamina/farmacologia , Camundongos , Camundongos Nus , NF-kappa B/análise , PTEN Fosfo-Hidrolase/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas/genética , RNA Interferente Pequeno/farmacologia , Reto/química , Serina-Treonina Quinases TOR/metabolismo , Fatores de Transcrição/genética , Carga Tumoral
14.
Cancers (Basel) ; 7(3): 1885-99, 2015 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-26393651

RESUMO

Colorectal cancer is a major global health problem resulting in over 600,000 deaths world-wide every year with the majority of these due to metastatic disease. Wnt signalling, and more specifically ß-catenin-related transcription, has been shown to drive both tumorigenesis and the metastatic process in colorectal neoplasia, yet its complex interactions with other key signalling pathways, such as hedgehog, remain to be elucidated. We have previously shown that the Hedgehog (HH) signalling pathway is active in cells from colorectal tumours, and that inhibition of the pathway with cyclopamine induces apoptosis. We now show that cyclopamine treatment reduces ß-catenin related transcription in colorectal cancer cell lines, and that this effect can be reversed by addition of Sonic Hedgehog protein. We also show that cyclopamine concomitantly induces expression of the tumour suppressor and prognostic indicator E-cadherin. Consistent with a role for HH in regulating the invasive potential we show that cyclopamine reduces the expression of transcription factors (Slug, Snail and Twist) associated with the epithelial-mesenchymal transition and reduces the invasiveness of colorectal cancer cells in vitro. Taken together, Cancers 2015, 7 1886 these data show that pharmacological inhibition of the hedgehog pathway has therapeutic potential in the treatment of colorectal cancer.

16.
Mol Oncol ; 9(1): 167-78, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25224594

RESUMO

The angiogenic capability of colorectal carcinomas (CRC), and their susceptibility to anti-angiogenic therapy, is determined by expression of vascular endothelial growth factor (VEGF) isoforms. The intracellular protein T-cell Intracellular Antigen (TIA-1) alters post-transcriptional RNA processing and binds VEGF-A mRNA. We therefore tested the hypothesis that TIA-1 could regulate VEGF-A isoform expression in colorectal cancers. TIA-1 and VEGF-A isoform expression was measured in colorectal cancers and cell lines. We discovered that an endogenous splice variant of TIA-1 encoding a truncated protein, short TIA-1 (sTIA-1) was expressed in CRC tissues and invasive K-Ras mutant colon cancer cells and tissues but not in adenoma cell lines. sTIA-1 was more highly expressed in CRC than in normal tissues and increased with tumour stage. Knockdown of sTIA-1 or over-expression of full length TIA-1 (flTIA-1) induced expression of the anti-angiogenic VEGF isoform VEGF-A165b. Whereas flTIA-1 selectively bound VEGF-A165 mRNA and increased translation of VEGF-A165b, sTIA-1 prevented this binding. In nude mice, xenografted colon cancer cells over-expressing flTIA-1 formed smaller, less vascular tumours than those expressing sTIA-1, but flTIA-1 expression inhibited the effect of anti-VEGF antibodies. These results indicate that alternative splicing of an RNA binding protein can regulate isoform specific expression of VEGF providing an added layer of complexity to the angiogenic profile of colorectal cancer and their resistance to anti-angiogenic therapy.


Assuntos
Processamento Alternativo , Bevacizumab , Neoplasias do Colo/metabolismo , Resistencia a Medicamentos Antineoplásicos , Regulação Neoplásica da Expressão Gênica , Proteínas de Neoplasias/biossíntese , Neovascularização Patológica/metabolismo , Proteínas de Ligação a Poli(A)/biossíntese , Fator A de Crescimento do Endotélio Vascular/biossíntese , Animais , Neoplasias do Colo/irrigação sanguínea , Neoplasias do Colo/genética , Neoplasias do Colo/patologia , Células HEK293 , Células HeLa , Xenoenxertos , Humanos , Camundongos Nus , Proteínas de Neoplasias/genética , Transplante de Neoplasias , Neovascularização Patológica/genética , Neovascularização Patológica/patologia , Proteínas de Ligação a Poli(A)/genética , Isoformas de Proteínas/biossíntese , Isoformas de Proteínas/genética , Antígeno-1 Intracelular de Células T , Fator A de Crescimento do Endotélio Vascular/genética
17.
J Cell Sci ; 127(Pt 17): 3659-65, 2014 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-25074812

RESUMO

Nucleolar sequestration of the RelA subunit of nuclear factor (NF)-κB is an important mechanism for regulating NF-κB transcriptional activity. Ubiquitylation, facilitated by COMMD1 (also known as MURR1), acts as a crucial nucleolar-targeting signal for RelA, but how this ubiquitylation is regulated, and how it differs from cytokine-mediated ubiquitylation, which causes proteasomal degradation of RelA, is poorly understood. Here, we report a new role for p300 (also known as EP300) in controlling stimulus-specific ubiquitylation of RelA, through modulation of COMMD1. We show that p300 is required for stress-mediated ubiquitylation and nucleolar translocation of RelA, but that this effect is indirect. We also demonstrate that COMMD1 is acetylated by p300 and that acetylation protects COMMD1 from XIAP-mediated proteosomal degradation. Furthermore, we demonstrate that COMMD1 acetylation is enhanced by aspirin-mediated stress, and that this acetylation is absolutely required for the protein to bind RelA under these conditions. In contrast, tumour necrosis factor (TNF) has no effect on COMMD1 acetylation. Finally, we demonstrate these findings have relevance in a whole tissue setting. These data offer a new paradigm for the regulation of NF-κB transcriptional activity, and the multiple other pathways controlled by COMMD1.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteína p300 Associada a E1A/metabolismo , Fator de Transcrição RelA/metabolismo , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X/metabolismo , Acetilação , Nucléolo Celular/metabolismo , Células Cultivadas , Humanos , Processamento de Proteína Pós-Traducional/fisiologia , Subunidades Proteicas/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Ubiquitinação/fisiologia
18.
EMBO J ; 32(13): 1903-16, 2013 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-23736261

RESUMO

The Wnt/ß-catenin signalling and autophagy pathways each play important roles during development, adult tissue homeostasis and tumorigenesis. Here we identify the Wnt/ß-catenin signalling pathway as a negative regulator of both basal and stress-induced autophagy. Manipulation of ß-catenin expression levels in vitro and in vivo revealed that ß-catenin suppresses autophagosome formation and directly represses p62/SQSTM1 (encoding the autophagy adaptor p62) via TCF4. Furthermore, we show that during nutrient deprivation ß-catenin is selectively degraded via the formation of a ß-catenin-LC3 complex, attenuating ß-catenin/TCF-driven transcription and proliferation to favour adaptation during metabolic stress. Formation of the ß-catenin-LC3 complex is mediated by a W/YXXI/L motif and LC3-interacting region (LIR) in ß-catenin, which is required for interaction with LC3 and non-proteasomal degradation of ß-catenin. Thus, Wnt/ß-catenin represses autophagy and p62 expression, while ß-catenin is itself targeted for autophagic clearance in autolysosomes upon autophagy induction. These findings reveal a regulatory feedback mechanism that place ß-catenin at a key cellular integration point coordinating proliferation with autophagy, with implications for targeting these pathways for cancer therapy.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Autofagia , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Neoplasias do Colo/patologia , Lisossomos/metabolismo , Fatores de Transcrição/metabolismo , Proteínas Wnt/metabolismo , beta Catenina/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Antígenos CD/genética , Antígenos CD/metabolismo , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Western Blotting , Imunoprecipitação da Cromatina , Neoplasias do Colo/genética , Neoplasias do Colo/metabolismo , Imunofluorescência , Humanos , Técnicas Imunoenzimáticas , Receptor B1 de Leucócitos Semelhante a Imunoglobulina , Camundongos , Camundongos Knockout , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Fagossomos/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteólise , RNA Mensageiro/genética , RNA Interferente Pequeno/genética , Reação em Cadeia da Polimerase em Tempo Real , Receptores Imunológicos/genética , Receptores Imunológicos/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Proteína Sequestossoma-1 , Fator de Transcrição 4 , Fatores de Transcrição/genética , Células Tumorais Cultivadas , Proteínas Wnt/genética , beta Catenina/antagonistas & inibidores , beta Catenina/genética
19.
Carcinogenesis ; 34(5): 1150-7, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23349017

RESUMO

Cyclooxygenase-2 is overexpressed in the majority of colorectal tumours leading to elevated levels of prostaglandin E2 (PGE2), promoting many hallmarks of cancer. Importantly, PGE2 is reported to enhance Wnt/ß-catenin signalling in colorectal carcinoma cells and in normal haematopoietic stem cells where it promotes stem cell function. Although Wnt signalling plays a crucial role in intestinal stem cells, the relationship between PGE2 and intestinal stem cells is unclear. Given that the key intestinal cancer stem cell marker LGR5 (leucine-rich G-protein coupled receptor 5) is a Wnt target and PGE2 enhances Wnt signalling, the focus of this study was to investigate whether PGE2 regulated LGR5 expression in colorectal adenoma cells and whether LGR5 was important for tumour cell survival. PGE2 upregulated LGR5 protein in adenoma (RG/C2) and carcinoma (DLD-1) cell lines. LGR5 knockdown induced cell death in RG/C2 and AA/C1 adenoma cells, suggesting that LGR5 has an important survival-promoting role in adenoma cells. Indeed, we detected LGR5 protein expression in 4 of 4 human adenoma cell lines. Furthermore, LGR5 small interfering RNA inhibited the survival-promoting effects of PGE2 in RG/C2, suggesting that PGE2 promotes adenoma cell survival, at least in part, by increasing LGR5 expression. These studies, therefore, show the first link between PGE2 and LGR5 in human colorectal adenoma and carcinoma cells and demonstrate a survival-promoting role of LGR5. As non-steroidal anti-inflammatory drugs (NSAIDs) cause adenomas to regress in FAP patients, these studies could have important implications for the mechanism by which NSAIDs are chemopreventive, as lowering PGE2 levels could reduce LGR5 expression and survival of LGR5(+) adenoma stem cells.


Assuntos
Adenoma/metabolismo , Anti-Inflamatórios não Esteroides/farmacologia , Neoplasias Colorretais/metabolismo , Dinoprostona/metabolismo , Células-Tronco Neoplásicas/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Adenoma/genética , Adenoma/patologia , Carcinoma/tratamento farmacológico , Carcinoma/genética , Carcinoma/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Dinoprostona/genética , Feminino , Humanos , Pessoa de Meia-Idade , Células-Tronco Neoplásicas/efeitos dos fármacos , Receptores Acoplados a Proteínas G/genética , Regulação para Cima , Via de Sinalização Wnt/efeitos dos fármacos , Via de Sinalização Wnt/genética , beta Catenina/genética , beta Catenina/metabolismo
20.
Curr Pharm Des ; 18(26): 3874-88, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22632753

RESUMO

TGF-ß1 is an anti-inflammatory cytokine recognised as a key regulator of immunological homeostasis and inflammatory responses. Furthermore, TGF-ß1 is important for the regulation of cell growth, differentiation and apoptosis in a wide range of tissues including the intestinal epithelium. Reduced TGF-ß1 activity is thought to be responsible for the development of autoimmune disorders in several pathological conditions, including inflammatory bowel disease [IBD]. Although the cause of IBD is not yet known, research has shown that a number of factors may be involved including environment, diet and genetics, as well as cytokine exposure. Importantly, IBD is also associated with an increased lifetime risk of developing colorectal cancer, which remains the fourth most common cancer worldwide, representing a significant therapeutic challenge. As functionally implicated in both maintenance of the immune response and tissue homeostasis in the colon, TGF-ß1 signalling potentially sits at the crossroads between aberrant inflammation and colorectal tumorigenesis. Hence, the purpose of this paper is to review the evidence for cross talk between TGF-ß1 signalling and pathways important for colorectal tissue homeostasis, with the emphasis on understanding how deregulation of TGF-ß1 signalling contributes not only to aberrant inflammatory disease but also to colorectal tumour progression.


Assuntos
Neoplasias Colorretais/patologia , Inflamação/fisiopatologia , Fator de Crescimento Transformador beta1/metabolismo , Animais , Apoptose , Diferenciação Celular , Neoplasias Colorretais/etiologia , Progressão da Doença , Humanos , Inflamação/complicações , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...