Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Geophys Res Space Phys ; 126(2): e2019JA027285, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33777609

RESUMO

Polar mesospheric clouds (PMCs) occur in the summer near 82 -85km altitude due to seasonal changes of temperature and humidity. However, water vapor and associated PMCs have also been observed associated with rocket exhaust. The effects of this rocket exhaust on the temperature of the upper mesosphere are not well understood. To investigate these effects, 220 kg of pure water was explosively released at 85 km as part of the Super Soaker sounding rocket experiment on the night of January 25-26, 2018 at Poker Flat Research Range (65°N, 147°W). A cloud formed within 18 s and was measured by a ground-based Rayleigh lidar. The peak altitude of the cloud appeared to descend from 92 to 78 km over 3 min. Temperatures leading up to the release were between 197 and 232 K, about 50 K above the summertime water frost point when PMCs typically occur. The apparent motion of the cloud is interpreted in terms of the expansion of the explosive release. Analysis using a water vapor radiative cooling code coupled to a microphysical model indicates that the cloud formed due to the combined effects of rapid radiative cooling (∼25 K) by meter-scale filaments of nearly pure water vapor (∼1 ppv) and an increase in the frost point temperature (from 150 to 200 K) due to the high concentration of water vapor. These results indicate that water exhaust not only acts as a reservoir for mesospheric cloud production but also actively cools the mesosphere to induce cloud formation.

2.
J Geophys Res Atmos ; 125(14): e2019JD032037, 2020 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-32728500

RESUMO

Two successive mesospheric bores were observed over northeastern Canada on 13 July 2018 in high-resolution imaging and Rayleigh lidar profiling of polar mesospheric clouds (PMCs) performed aboard the PMC Turbo long-duration balloon experiment. Four wide field-of-view cameras spanning an area of ~75 × 150 km at PMC altitudes captured the two evolutions occurring over ~2 hr and resolved bore and associated instability features as small as ~100 m. The Rayleigh lidar provided PMC backscatter profiling that revealed vertical displacements, evolving brightness distributions, evidence of instability character and depths, and insights into bore formation, ducting, and dissipation. Both bores exhibited variable structure along their phases, suggesting variable gravity wave (GW) source and bore propagation conditions. Both bores also exhibited small-scale instability dynamics at their leading and trailing edges. Those at the leading edges comprised apparent Kelvin-Helmholtz instabilities that were advected downward and rearward beneath the bore descending phases extending into an apparently intensified shear layer. Instabilities at the trailing edges exhibited alignments approximately orthogonal to the bore phases that resembled those seen to accompany GW breaking or intrusions arising in high-resolution modeling of GW instability dynamics. Collectively, PMC Turbo bore imaging and lidar profiling enabled enhanced definition of bore dynamics relative to what has been possible by previous ground-based observations, and a potential to guide new, three-dimensional modeling of bore dynamics. The observed bore evolutions suggest potentially important roles for bores in the deposition of energy and momentum transported into the mesosphere and to higher altitudes by high-frequency GWs achieving large amplitudes.

3.
Earth Space Sci ; 7(8): e2020EA001238, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33796628

RESUMO

The Polar Mesospheric Cloud Turbulence (PMC Turbo) instrument consists of a balloon-borne platform which hosts seven cameras and a Rayleigh lidar. During a 6-day flight in July 2018, the cameras captured images of Polar Mesospheric Clouds (PMCs) with a sensitivity to spatial scales from ~20 m to 100 km at a ~2-s cadence and a full field of view (FOV) of hundreds of kilometers. We developed software optimized for imaging of PMCs, controlling multiple independent cameras, compressing and storing images, and for choosing telemetry communication channels. We give an overview of the PMC Turbo design focusing on the flight software and telemetry functions. We describe the performance of the system during its first flight in July 2018.

4.
Appl Opt ; 50(18): 2916-26, 2011 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-21691356

RESUMO

A study on the feasibility of using pseudorandom modulation continuous-wave (PMCW) Na lidar for mesopause-region temperature and horizontal wind measurements is presented with a number of specific geometries and associated beam-telescope overlap functions, suitable for ground-based and airborne deployments. The performance of these deployment scenarios is analyzed by scaling from the received signal and sky background and the measurement uncertainties in temperature and horizontal wind of the well-tested Colorado State University pulsed Na lidar. Using currently available high-power (~20 W) continuous-wave Na narrowband lasers, a compact PMCW bistatic Na lidar system can indeed be deployed to simultaneously measure mesopause-region temperature and horizontal winds on a 24 h continuous basis, weather permitting.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...