Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Rep ; 42(11): 113366, 2023 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-37938974

RESUMO

Monoclonal antibodies against the Ebola virus (EBOV) surface glycoprotein are effective treatments for EBOV disease. Antibodies targeting the EBOV glycoprotein (GP) head epitope have potent neutralization and Fc effector function activity and thus are of high interest as therapeutics and for vaccine design. Here we focus on the head-binding antibodies 1A2 and 1D5, which have been identified previously in a longitudinal study of survivors of EBOV infection. 1A2 and 1D5 have the same heavy- and light-chain germlines despite being isolated from different individuals and at different time points after recovery from infection. Cryoelectron microscopy analysis of each antibody in complex with the EBOV surface GP reveals key amino acid substitutions in 1A2 that contribute to greater affinity, improved neutralization potency, and enhanced breadth as well as two strategies for antibody evolution from a common site.


Assuntos
Ebolavirus , Doença pelo Vírus Ebola , Humanos , Anticorpos Neutralizantes , Anticorpos Antivirais , Microscopia Crioeletrônica , Estudos Longitudinais
2.
NPJ Biofilms Microbiomes ; 9(1): 18, 2023 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-37029136

RESUMO

Geobacter sulfurreducens is an electroactive bacterium capable of reducing metal oxides in the environment and electrodes in engineered systems1,2. Geobacter sp. are the keystone organisms in electrogenic biofilms, as their respiration consumes fermentation products produced by other organisms and reduces a terminal electron acceptor e.g. iron oxide or an electrode. To respire extracellular electron acceptors with a wide range of redox potentials, G. sulfurreducens has a complex network of respiratory proteins, many of which are membrane-bound3-5. We have identified intracytoplasmic membrane (ICM) structures in G. sulfurreducens. This ICM is an invagination of the inner membrane that has folded and organized by an unknown mechanism, often but not always located near the tip of a cell. Using confocal microscopy, we can identify that at least half of the cells contain an ICM when grown on low potential anode surfaces, whereas cells grown at higher potential anode surfaces or using fumarate as electron acceptor had significantly lower ICM frequency. 3D models developed from cryo-electron tomograms show the ICM to be a continuous extension of the inner membrane in contact with the cytoplasmic and periplasmic space. The differential abundance of ICM in cells grown under different thermodynamic conditions supports the hypothesis that it is an adaptation to limited energy availability, as an increase in membrane-bound respiratory proteins could increase electron flux. Thus, the ICM provides extra inner-membrane surface to increase the abundance of these proteins. G. sulfurreducens is the first Thermodesulfobacterium or metal-oxide reducer found to produce ICMs.


Assuntos
Geobacter , Geobacter/metabolismo , Proteínas de Membrana/metabolismo , Biofilmes , Membranas
3.
Cell Host Microbe ; 31(2): 260-272.e7, 2023 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-36708708

RESUMO

Monoclonal antibodies can provide important pre- or post-exposure protection against infectious disease for those not yet vaccinated or in individuals that fail to mount a protective immune response after vaccination. Inmazeb (REGN-EB3), a three-antibody cocktail against Ebola virus, lessened disease and improved survival in a controlled trial. Here, we present the cryo-EM structure at 3.1 Å of the Ebola virus glycoprotein, determined without symmetry averaging, in a simultaneous complex with the antibodies in the Inmazeb cocktail. This structure allows the modeling of previously disordered portions of the glycoprotein glycan cap, maps the non-overlapping epitopes of Inmazeb, and illuminates the basis for complementary activities and residues critical for resistance to escape by these and other clinically relevant antibodies. We further provide direct evidence that Inmazeb protects against the rapid emergence of escape mutants, whereas monotherapies even against conserved epitopes do not, supporting the benefit of a cocktail versus a monotherapy approach.


Assuntos
Ebolavirus , Doença pelo Vírus Ebola , Humanos , Anticorpos Antivirais , Glicoproteínas , Epitopos , Anticorpos Neutralizantes
4.
Sci Adv ; 8(51): eade4455, 2022 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-36563147

RESUMO

Improving the precision and function of encapsulating three-dimensional (3D) DNA nanostructures via curved geometries could have transformative impacts on areas such as molecular transport, drug delivery, and nanofabrication. However, the addition of non-rasterized curvature escalates design complexity without algorithmic regularity, and these challenges have limited the ad hoc development and usage of previously unknown shapes. In this work, we develop and automate the application of a set of previously unknown design principles that now includes a multilayer design for closed and curved DNA nanostructures to resolve past obstacles in shape selection, yield, mechanical rigidity, and accessibility. We design, analyze, and experimentally demonstrate a set of diverse 3D curved nanoarchitectures, showing planar asymmetry and examining partial multilayer designs. Our automated design tool implements a combined algorithmic and numerical approximation strategy for scaffold routing and crossover placement, which may enable wider applications of general DNA nanostructure design for nonregular or oblique shapes.

5.
ACS Nano ; 16(9): 14086-14096, 2022 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-35980981

RESUMO

We present here the combination of experimental and computational modeling tools for the design and characterization of protein-DNA hybrid nanostructures. Our work incorporates several features in the design of these nanostructures: (1) modeling of the protein-DNA linker identity and length; (2) optimizing the design of protein-DNA cages to account for mechanical stresses; (3) probing the incorporation efficiency of protein-DNA conjugates into DNA nanostructures. The modeling tools were experimentally validated using structural characterization methods like cryo-TEM and AFM. Our method can be used for fitting low-resolution electron density maps when structural insights cannot be deciphered from experiments, as well as enable in-silico validation of nanostructured systems before their experimental realization. These tools will facilitate the design of complex hybrid protein-DNA nanostructures that seamlessly integrate the two different biomolecules.


Assuntos
Simulação de Dinâmica Molecular , Nanoestruturas , Microscopia Crioeletrônica , DNA/química , Nanoestruturas/química
6.
PLoS One ; 17(8): e0267370, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35913965

RESUMO

Francisella tularensis is an extremely infectious pathogen and a category A bioterrorism agent. It causes the highly contagious zoonosis, Tularemia. Currently, FDA approved vaccines against tularemia are unavailable. F. tularensis outer membrane protein A (FopA) is a well-studied virulence determinant and protective antigen against tularemia. It is a major outer membrane protein (Omp) of F. tularensis. However, FopA-based therapeutic intervention is hindered due to lack of complete structural information for membrane localized mature FopA. In our study, we established recombinant expression, monodisperse purification, crystallization and X-ray diffraction (~6.5 Å) of membrane localized mature FopA. Further, we performed bioinformatics and biophysical experiments to unveil its structural organization in the outer membrane. FopA consists of 393 amino acids and has less than 40% sequence identity to known bacterial Omps. Using comprehensive sequence alignments and structure predictions together with existing partial structural information, we propose a two-domain organization for FopA. Circular dichroism spectroscopy and heat modifiability assay confirmed FopA has a ß-barrel domain consistent with alphafold2's prediction of an eight stranded ß-barrel at the N-terminus. Small angle X-ray scattering (SAXS) and native-polyacrylamide gel electrophoresis revealed FopA purified in detergent micelles is predominantly dimeric. Molecular density derived from SAXS at 31 Å shows putative dimeric N-terminal ß-barrels surrounded by detergent corona and connected to C-terminal domains via flexible linker. Disorder analysis predicts N- and C-terminal domains are interspersed by a long intrinsically disordered region and alphafold2 predicts this region to be largely unstructured. Taken together, we propose a dimeric, two-domain organization of FopA in the outer membrane: the N-terminal ß-barrel is membrane embedded, provides dimerization interface and tethers to membrane extrinsic C-terminal domain via long flexible linker. Structure determination of membrane localized mature FopA is essential to understand its role in pathogenesis and develop anti-tularemia therapeutics. Our results pave the way towards it.


Assuntos
Francisella tularensis , Tularemia , Detergentes , Humanos , Espalhamento a Baixo Ângulo , Tularemia/microbiologia , Difração de Raios X
7.
Nucleic Acids Res ; 50(13): 7697-7720, 2022 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-35801871

RESUMO

Artemis nuclease and DNA-dependent protein kinase catalytic subunit (DNA-PKcs) are key components in nonhomologous DNA end joining (NHEJ), the major repair mechanism for double-strand DNA breaks. Artemis activation by DNA-PKcs resolves hairpin DNA ends formed during V(D)J recombination. Artemis deficiency disrupts development of adaptive immunity and leads to radiosensitive T- B- severe combined immunodeficiency (RS-SCID). An activated state of Artemis in complex with DNA-PK was solved by cryo-EM recently, which showed Artemis bound to the DNA. Here, we report that the pre-activated form (basal state) of the Artemis:DNA-PKcs complex is stable on an agarose-acrylamide gel system, and suitable for cryo-EM structural analysis. Structures show that the Artemis catalytic domain is dynamically positioned externally to DNA-PKcs prior to ABCDE autophosphorylation and show how both the catalytic and regulatory domains of Artemis interact with the N-HEAT and FAT domains of DNA-PKcs. We define a mutually exclusive binding site for Artemis and XRCC4 on DNA-PKcs and show that an XRCC4 peptide disrupts the Artemis:DNA-PKcs complex. All of the findings are useful in explaining how a hypomorphic L3062R missense mutation of DNA-PKcs could lead to insufficient Artemis activation, hence RS-SCID. Our results provide various target site candidates to design disruptors for Artemis:DNA-PKcs complex formation.


Assuntos
Proteína Quinase Ativada por DNA/química , Proteínas de Ligação a DNA/química , Endonucleases/química , Reparo do DNA , Proteína Quinase Ativada por DNA/genética , Proteína Quinase Ativada por DNA/metabolismo , Proteínas de Ligação a DNA/metabolismo , Endonucleases/metabolismo , Humanos , Proteínas Nucleares/metabolismo , Imunodeficiência Combinada Severa/genética
8.
ACS Appl Bio Mater ; 2022 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-35587230

RESUMO

Methods that allow the study of the structure of proteins in complex with nanomaterials promise to enhance our understanding of how biological molecules interface with inorganic materials. We used single-particle cryo-electron microscopy (cryo-EM) to demonstrate the potential for cryo-EM analysis to reveal structural details of protein-nanoparticle complexes. Two protein-nanomaterial complexes, namely, GroEL bound to platinum nanoparticles (GroEL-PtNP) and ferritin bound to an iron oxide nanoparticle, were used as model samples. For the GroEL-PtNP complex, a final reconstruction was obtained to 3.93 Å, which allowed us to fit the atomic model of GroEL into the resulting map. This sets the stage for future work and improvements on the use of cryo-EM for the study of protein-nanomaterial complexes.

9.
Nat Commun ; 13(1): 1278, 2022 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-35277487

RESUMO

Yeast Cadmium Factor 1 (Ycf1) sequesters heavy metals and glutathione into the vacuole to counter cell stress. Ycf1 belongs to the ATP binding cassette C-subfamily (ABCC) of transporters, many of which are regulated by phosphorylation on intrinsically-disordered domains. The regulatory mechanism of phosphorylation is still poorly understood. Here, we report two cryo-EM structures of Ycf1 at 3.4 Å and 4.0 Å resolution in inward-facing open conformations that capture previously unobserved ordered states of the intrinsically disordered regulatory domain (R-domain). R-domain phosphorylation is clearly evident and induces a topology promoting electrostatic and hydrophobic interactions with Nucleotide Binding Domain 1 (NBD1) and the Lasso motif. These interactions stay constant between the structures and are related by rigid body movements of the NBD1/R-domain complex. Biochemical data further show R-domain phosphorylation reorganizes the Ycf1 architecture and is required for maximal ATPase activity. Together, we provide insights into how R-domains control ABCC transporter activity.


Assuntos
Transportadores de Cassetes de Ligação de ATP , Proteínas de Saccharomyces cerevisiae , Transportadores de Cassetes de Ligação de ATP/metabolismo , Cádmio/metabolismo , Proteínas de Membrana Transportadoras , Fosforilação , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
10.
Sci Adv ; 7(49): eabl8213, 2021 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-34851659

RESUMO

Vaccines derived from chimpanzee adenovirus Y25 (ChAdOx1), human adenovirus type 26 (HAdV-D26), and human adenovirus type 5 (HAdV-C5) are critical in combatting the severe acute respiratory coronavirus 2 (SARS-CoV-2) pandemic. As part of the largest vaccination campaign in history, ultrarare side effects not seen in phase 3 trials, including thrombosis with thrombocytopenia syndrome (TTS), a rare condition resembling heparin-induced thrombocytopenia (HIT), have been observed. This study demonstrates that all three adenoviruses deployed as vaccination vectors versus SARS-CoV-2 bind to platelet factor 4 (PF4), a protein implicated in the pathogenesis of HIT. We have determined the structure of the ChAdOx1 viral vector and used it in state-of-the-art computational simulations to demonstrate an electrostatic interaction mechanism with PF4, which was confirmed experimentally by surface plasmon resonance. These data confirm that PF4 is capable of forming stable complexes with clinically relevant adenoviruses, an important step in unraveling the mechanisms underlying TTS.

12.
J Vis Exp ; (177)2021 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-34866621

RESUMO

Electron crystallography is a powerful tool for high-resolution structure determination. Macromolecules such as soluble or membrane proteins can be grown into highly ordered two-dimensional (2D) crystals under favorable conditions. The quality of the grown 2D crystals is crucial to the resolution of the final reconstruction via 2D image processing. Over the years, lipid monolayers have been used as a supporting layer to foster the 2D crystallization of peripheral membrane proteins as well as soluble proteins. This method can also be applied to 2D crystallization of integral membrane proteins but requires more extensive empirical investigation to determine detergent and dialysis conditions to promote partitioning to the monolayer. A lipid monolayer forms at the air-water interface such that the polar lipid head groups remain hydrated in the aqueous phase and the non-polar, acyl chains, tails partition into the air, breaking the surface tension and flattening the water surface. The charged nature or distinctive chemical moieties of the head groups provide affinity for proteins in solution, promoting binding for 2D array formation. A newly formed monolayer with the 2D array can be readily transfer into an electron microscope (EM) on a carbon-coated copper grid used to lift and support the crystalline array. In this work, we describe a lipid monolayer methodology for cryogenic electron microscopic (cryo-EM) imaging.


Assuntos
Elétrons , Diálise Renal , Microscopia Crioeletrônica/métodos , Cristalografia por Raios X , Lipídeos/química , Proteínas de Membrana/química
13.
Int J Mol Sci ; 22(15)2021 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-34360842

RESUMO

IBMPFD/ALS is a genetic disorder caused by a single amino acid mutation on the p97 ATPase, promoting ATPase activity and cofactor dysregulation. The disease mechanism underlying p97 ATPase malfunction remains unclear. To understand how the mutation alters the ATPase regulation, we assembled a full-length p97R155H with its p47 cofactor and first visualized their structures using single-particle cryo-EM. More than one-third of the population was the dodecameric form. Nucleotide presence dissociates the dodecamer into two hexamers for its highly elevated function. The N-domains of the p97R155H mutant all show up configurations in ADP- or ATPγS-bound states. Our functional and structural analyses showed that the p47 binding is likely to impact the p97R155H ATPase activities via changing the conformations of arginine fingers. These functional and structural analyses underline the ATPase dysregulation with the miscommunication between the functional modules of the p97R155H.


Assuntos
Demência Frontotemporal/metabolismo , Modelos Moleculares , Distrofia Muscular do Cíngulo dos Membros/metabolismo , Mutação , Miosite de Corpos de Inclusão/metabolismo , Osteíte Deformante/metabolismo , Proteínas de Ligação a Fator Solúvel Sensível a N-Etilmaleimida/metabolismo , Proteína com Valosina/genética , Demência Frontotemporal/genética , Humanos , Microscopia Eletrônica de Transmissão , Distrofia Muscular do Cíngulo dos Membros/genética , Miosite de Corpos de Inclusão/genética , Osteíte Deformante/genética , Conformação Proteica , Proteína com Valosina/metabolismo
14.
Elife ; 102021 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-34435952

RESUMO

Photosynthetic organisms have adapted to survive a myriad of extreme environments from the earth's deserts to its poles, yet the proteins that carry out the light reactions of photosynthesis are highly conserved from the cyanobacteria to modern day crops. To investigate adaptations of the photosynthetic machinery in cyanobacteria to excessive light stress, we isolated a new strain of cyanobacteria, Cyanobacterium aponinum 0216, from the extreme light environment of the Sonoran Desert. Here we report the biochemical characterization and the 2.7 Å resolution structure of trimeric photosystem I from this high-light-tolerant cyanobacterium. The structure shows a new conformation of the PsaL C-terminus that supports trimer formation of cyanobacterial photosystem I. The spectroscopic analysis of this photosystem I revealed a decrease in far-red absorption, which is attributed to a decrease in the number of long- wavelength chlorophylls. Using these findings, we constructed two chimeric PSIs in Synechocystis sp. PCC 6803 demonstrating how unique structural features in photosynthetic complexes can change spectroscopic properties, allowing organisms to thrive under different environmental stresses.


Assuntos
Cianobactérias/genética , Cianobactérias/fisiologia , Complexo de Proteína do Fotossistema I/química , Complexo de Proteína do Fotossistema I/genética , Aclimatação , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Clorofila , Microscopia Crioeletrônica , Luz , Modelos Moleculares , Fotossíntese , Complexo de Proteína do Fotossistema I/metabolismo , Conformação Proteica , Synechocystis/metabolismo
15.
J Am Chem Soc ; 143(23): 8639-8646, 2021 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-34078072

RESUMO

Metal nanostructures of chiral geometry interacting with light via surface plasmon resonances can produce tailorable optical activity with their structural alterations. However, bottom-up fabrication of arbitrary chiral metal nanostructures with precise size and morphology remains a synthetic challenge. Here we develop a DNA origami-enabled aqueous solution metallization strategy to prescribe the chirality of silver nanostructures in three dimensions. We find that diamine silver(I) complexes coordinate with the bases of prescribed single-stranded protruding clustered DNA (pcDNA) on DNA origami via synergetic interactions including coordination, hydrogen bonds, and ion-π interaction, which induce site-specific pcDNA condensation and local enrichment of silver precursors that lowers the activation energy for nucleation. Using tubular DNA origami-based metallization, we obtain helical silver patterns up to a micrometer in length with well-defined chirality and pitches. We further demonstrate tailorable plasmonic optical activity of metallized chiral silver nanostructures. This method opens new pathways to synthesize programmable inorganic materials with arbitrary morphology and chirality.


Assuntos
DNA/química , Nanopartículas Metálicas/química , Prata/química , Ligação de Hidrogênio , Tamanho da Partícula
16.
Structure ; 29(8): 873-885.e5, 2021 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-33784495

RESUMO

Taspase1 is an Ntn-hydrolase overexpressed in primary human cancers, coordinating cancer cell proliferation, invasion, and metastasis. Loss of Taspase1 activity disrupts proliferation of human cancer cells in vitro and in mouse models of glioblastoma. Taspase1 is synthesized as an inactive proenzyme, becoming active upon intramolecular cleavage. The activation process changes the conformation of a long fragment at the C-terminus of the α subunit, for which no full-length structural information exists and whose function is poorly understood. We present a cloning strategy to generate a circularly permuted form of Taspase1 to determine the crystallographic structure of active Taspase1. We discovered that this region forms a long helix and is indispensable for the catalytic activity of Taspase1. Our study highlights the importance of this element for the enzymatic activity of Ntn-hydrolases, suggesting that it could be a potential target for the design of inhibitors with potential to be developed into anticancer therapeutics.


Assuntos
Endopeptidases/química , Endopeptidases/metabolismo , Clonagem Molecular , Cristalografia por Raios X , Difusão Dinâmica da Luz , Endopeptidases/genética , Ativação Enzimática , Humanos , Modelos Moleculares , Domínios Proteicos , Estrutura Secundária de Proteína
17.
J Microsc ; 282(3): 215-223, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33305823

RESUMO

Infrared spectroscopy is a powerful technique for characterising protein structure. It is now possible to record energy losses corresponding to the infrared region in the electron microscope and to avoid damage by positioning the probe in the region adjacent to the structure being studied. Spectra from bacteriorhodopsin, a protein that is predominately a α helix, and OmpF porin, a protein that is mainly ß sheet show significant differences over a spectral range from ∼0.1 to 0.25 eV (∼1000 to 1800 cm-1 ). Although the energy resolution equivalent to 60 cm-1 is inferior to Fourier Transform InfraRed Spectroscopy (FTIR) the spectra are very sensitive to molecular orientation. Polar bonds aligned parallel to the specimen grid make particularly strong contributions to the energy loss spectra. Ultra-high-resolution energy loss spectroscopy in the electron microscope can potentially add useful information to imaging and diffraction for determining the secondary structure misfolding believed to be responsible for dementia diseases such as Alzheimer's.


Proteins are long linear molecular chains that when folded into complex three-dimensional shapes enable them to perform their biological functions. Infrared spectroscopy is a powerful technique for characterising protein folds, especially the proportions of helices and sheets that are significant building blocks in the overall structure. Traditionally, it was only possible to record infrared spectra from large amounts of material. In this paper, we show that it is possible to record the equivalent of the infrared spectrum from regions much smaller than a cell using a high-performance spectrometer coupled to electron microscopy. One great advantage is that the spectroscopic measurements can be combined with the standard high-resolution imaging and other characterisation techniques available in the electron microscope. We believe expansion of this method will impact diseases such as Alzheimer's, which are believed to be the results of an incorrect folding process. Our technique, where we combine infrared spectroscopic measurements with electron microscopy, could be invaluable in characterising the critical early stages of protein misfolding and/or assembly. This information will be invaluable in disease prognosis and the search for potential therapies.


Assuntos
Elétrons , Proteínas , Estrutura Secundária de Proteína , Espectroscopia de Infravermelho com Transformada de Fourier
18.
Nat Commun ; 11(1): 6015, 2020 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-33219216

RESUMO

A Correction to this paper has been published: https://doi.org/10.1038/s41467-020-19953-w.

19.
Nat Commun ; 11(1): 5279, 2020 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-33077842

RESUMO

Photosystem I coordinates more than 90 chlorophylls in its core antenna while achieving near perfect quantum efficiency. Low energy chlorophylls (also known as red chlorophylls) residing in the antenna are important for energy transfer dynamics and yield, however, their precise location remained elusive. Here, we construct a chimeric Photosystem I complex in Synechocystis PCC 6803 that shows enhanced absorption in the red spectral region. We combine Cryo-EM and spectroscopy to determine the structure-function relationship in this red-shifted Photosystem I complex. Determining the structure of this complex reveals the precise architecture of the low energy site as well as large scale structural heterogeneity which is probably universal to all trimeric Photosystem I complexes. Identifying the structural elements that constitute red sites can expand the absorption spectrum of oxygenic photosynthetic and potentially modulate light harvesting efficiency.

20.
Commun Biol ; 3(1): 482, 2020 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-32879423

RESUMO

In higher plants, chloroplast ATP synthase has a unique redox switch on its γ subunit that modulates enzyme activity to limit ATP hydrolysis at night. To understand the molecular details of the redox modulation, we used single-particle cryo-EM to determine the structures of spinach chloroplast ATP synthase in both reduced and oxidized states. The disulfide linkage of the oxidized γ subunit introduces a torsional constraint to stabilize the two ß hairpin structures. Once reduced, free cysteines alleviate this constraint, resulting in a concerted motion of the enzyme complex and a smooth transition between rotary states to facilitate the ATP synthesis. We added an uncompetitive inhibitor, tentoxin, in the reduced sample to limit the flexibility of the enzyme and obtained high-resolution details. Our cryo-EM structures provide mechanistic insight into the redox modulation of the energy regulation activity of chloroplast ATP synthase.


Assuntos
ATPases de Cloroplastos Translocadoras de Prótons/química , ATPases de Cloroplastos Translocadoras de Prótons/metabolismo , Spinacia oleracea/enzimologia , Biocatálise , ATPases de Cloroplastos Translocadoras de Prótons/ultraestrutura , Microscopia Crioeletrônica , Luz , Modelos Biológicos , Modelos Moleculares , Nucleotídeos/metabolismo , Oxirredução , Domínios Proteicos , Subunidades Proteicas/química , Estatística como Assunto , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...