Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Hum Mol Genet ; 25(1): 146-57, 2016 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-26604147

RESUMO

Rett syndrome (RTT) is a rare X-linked neurodevelopmental disorder, characterized by normal post-natal development followed by a sudden deceleration in brain growth with progressive loss of acquired motor and language skills, stereotypic hand movements and severe cognitive impairment. Mutations in the methyl-CpG-binding protein 2 (MECP2) cause more than 95% of classic cases. Recently, it has been shown that the loss of Mecp2 from glia negatively influences neurons in a non-cell-autonomous fashion, and that in Mecp2-null mice, re-expression of Mecp2 preferentially in astrocytes significantly improved locomotion and anxiety levels, restored respiratory abnormalities to a normal pattern and greatly prolonged lifespan compared with globally null mice. We now report that microtubule (MT)-dependent vesicle transport is altered in Mecp2-deficient astrocytes from newborn Mecp2-deficient mice compared with control wild-type littermates. Similar observation has been made in human MECP2 p.Arg294* iPSC-derived astrocytes. Importantly, administration of Epothilone D, a brain-penetrant MT-stabilizing natural product, was found to restore MT dynamics in Mecp2-deficient astrocytes and in MECP2 p.Arg294* iPSC-derived astrocytes in vitro. Finally, we report that relatively low weekly doses of Epothilone D also partially reversed the impaired exploratory behavior in Mecp2(308/y) male mice. These findings represent a first step toward the validation of an innovative treatment for RTT.


Assuntos
Astrócitos/metabolismo , Proteína 2 de Ligação a Metil-CpG/metabolismo , Microtúbulos/metabolismo , Vesículas Transportadoras/metabolismo , Acetilação , Animais , Arginina/metabolismo , Astrócitos/efeitos dos fármacos , Linhagem Celular , Células Cultivadas , Epotilonas/farmacologia , Desacetilase 6 de Histona , Histona Desacetilases/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microtúbulos/efeitos dos fármacos , Células-Tronco Pluripotentes/metabolismo , Síndrome de Rett/metabolismo , Tubulina (Proteína)/metabolismo , Moduladores de Tubulina/farmacologia
2.
Hum Mol Genet ; 23(11): 2968-80, 2014 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-24419315

RESUMO

The disease mechanism of Rett syndrome (RTT) is not well understood. Studies in RTT mouse models have suggested a non-cell-autonomous role for astrocytes in RTT pathogenesis. However, it is not clear whether this is also true for human RTT astrocytes. To establish an in vitro human RTT model, we previously generated isogenic induced pluripotent stem cell (iPSC) lines from several RTT patients carrying different disease-causing mutations. Here, we show that these RTT iPSC lines can be efficiently differentiated into astroglial progenitors and glial fibrillary acidic protein-expressing (GFAP(+)) astrocytes that maintain isogenic status, that mutant RTT astrocytes carrying three different RTT mutations and their conditioned media have adverse effects on the morphology and function of wild-type neurons and that the glial effect on neuronal morphology is independent of the intrinsic neuronal deficit in mutant neurons. Moreover, we show that both insulin-like growth factor 1 (IGF-1) and GPE (a peptide containing the first 3 amino acids of IGF-1) are able to partially rescue the neuronal deficits caused by mutant RTT astrocytes. Our findings confirm the critical glial contribution to RTT pathology, reveal potential cellular targets of IGF-1 therapy and further validate patient-specific iPSCs and their derivatives as valuable tools to study RTT disease mechanism.


Assuntos
Astrócitos/citologia , Diferenciação Celular , Células-Tronco Pluripotentes Induzidas/citologia , Proteína 2 de Ligação a Metil-CpG/genética , Neurônios/metabolismo , Síndrome de Rett/genética , Astrócitos/metabolismo , Células Cultivadas , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Proteína 2 de Ligação a Metil-CpG/metabolismo , Mutação , Neurônios/citologia , Síndrome de Rett/metabolismo , Síndrome de Rett/fisiopatologia
3.
PLoS One ; 6(9): e25255, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21966470

RESUMO

Rett syndrome (RTT) is an autism spectrum developmental disorder caused by mutations in the X-linked methyl-CpG binding protein 2 (MECP2) gene. Excellent RTT mouse models have been created to study the disease mechanisms, leading to many important findings with potential therapeutic implications. These include the identification of many MeCP2 target genes, better understanding of the neurobiological consequences of the loss- or mis-function of MeCP2, and drug testing in RTT mice and clinical trials in human RTT patients. However, because of potential differences in the underlying biology between humans and common research animals, there is a need to establish cell culture-based human models for studying disease mechanisms to validate and expand the knowledge acquired in animal models. Taking advantage of the nonrandom pattern of X chromosome inactivation in female induced pluripotent stem cells (iPSC), we have generated isogenic pairs of wild type and mutant iPSC lines from several female RTT patients with common and rare RTT mutations. R294X (arginine 294 to stop codon) is a common mutation carried by 5-6% of RTT patients. iPSCs carrying the R294X mutation has not been studied. We differentiated three R294X iPSC lines and their isogenic wild type control iPSC into neurons with high efficiency and consistency, and observed characteristic RTT pathology in R294X neurons. These isogenic iPSC lines provide unique resources to the RTT research community for studying disease pathology, screening for novel drugs, and testing toxicology.


Assuntos
Células-Tronco Pluripotentes Induzidas/metabolismo , Proteína 2 de Ligação a Metil-CpG/genética , Síndrome de Rett/genética , Adulto , Animais , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Linhagem Celular , Criança , Pré-Escolar , Feminino , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Masculino , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Neurônios/citologia , Neurônios/metabolismo , Teratoma/metabolismo , Teratoma/patologia , Inativação do Cromossomo X/genética
4.
Nat Neurosci ; 14(8): 1001-8, 2011 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-21765426

RESUMO

DNA methylation-dependent epigenetic mechanisms underlie the development and function of the mammalian brain. MeCP2 is highly expressed in neurons and functions as a molecular linker between DNA methylation, chromatin remodeling and transcription regulation. Previous in vitro studies have shown that neuronal activity-induced phosphorylation (NAIP) of methyl CpG-binding protein 2 (MeCP2) precedes its release from the Bdnf promoter and the ensuing Bdnf transcription. However, the in vivo function of this phosphorylation event remains elusive. We generated knock-in mice that lack NAIP of MeCP2 and found that they performed better in hippocampus-dependent memory tests, presented enhanced long-term potentiation at two synapses in the hippocampus and showed increased excitatory synaptogenesis. At the molecular level, the phospho-mutant MeCP2 protein bound more tightly to several MeCP2 target gene promoters and altered the expression of these genes. Our results suggest that NAIP of MeCP2 is required for modulating dynamic functions of the adult mouse brain.


Assuntos
Regulação da Expressão Gênica/fisiologia , Potenciação de Longa Duração/fisiologia , Memória/fisiologia , Proteína 2 de Ligação a Metil-CpG/metabolismo , Neurônios/fisiologia , Percepção Espacial/fisiologia , Sinapses/fisiologia , Análise de Variância , Anestésicos Locais/farmacologia , Animais , Biofísica , Células Cultivadas , Córtex Cerebral/citologia , Córtex Cerebral/efeitos dos fármacos , Proteína 4 Homóloga a Disks-Large , Estimulação Elétrica/métodos , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/genética , Medo/fisiologia , Regulação da Expressão Gênica/genética , Guanilato Quinases/metabolismo , Hipocampo/citologia , Hipocampo/efeitos dos fármacos , Potenciação de Longa Duração/genética , Aprendizagem em Labirinto/fisiologia , Proteínas de Membrana/metabolismo , Proteína 2 de Ligação a Metil-CpG/genética , Camundongos , Camundongos Transgênicos , Microscopia Confocal , Proteínas do Tecido Nervoso/metabolismo , Proteína Inibidora de Apoptose Neuronal/metabolismo , Neurônios/efeitos dos fármacos , Fosfopiruvato Hidratase/metabolismo , Fosforilação/genética , Cloreto de Potássio/farmacologia , Serina/metabolismo , Natação/psicologia , Sinapses/genética , Tetrodotoxina/farmacologia , Proteína Vesicular 2 de Transporte de Glutamato/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...