Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
bioRxiv ; 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38766019

RESUMO

Breast cancer brain metastases (BCBM) are a significant cause of mortality and are incurable. Thus, identifying BCBM targets that reduce morbidity and mortality is critical. BCBM upregulate Stearoyl-CoA Desaturase (SCD), an enzyme that catalyzes the synthesis of monounsaturated fatty acids, suggesting a potential metabolic vulnerability of BCBM. In this study, we tested the effect of a brain-penetrant clinical-stage inhibitor of SCD (SCDi), on breast cancer cells and mouse models of BCBM. Lipidomics, qPCR, and western blot were used to study the in vitro effects of SCDi. Single-cell RNA sequencing was used to explore the effects of SCDi on cancer and immune cells in a BCBM mouse model. Pharmacological inhibition of SCD markedly reshaped the lipidome of breast cancer cells and resulted in endoplasmic reticulum stress, DNA damage, loss of DNA damage repair, and cytotoxicity. Importantly, SCDi alone or combined with a PARP inhibitor prolonged the survival of BCBM-bearing mice. When tested in a syngeneic mouse model of BCBM, scRNAseq revealed that pharmacological inhibition of SCD enhanced antigen presentation by dendritic cells, was associated with a higher interferon signaling, increased the infiltration of cytotoxic T cells, and decreased the proportion of exhausted T cells and regulatory T cells in the tumor microenvironment (TME). Additionally, pharmacological inhibition of SCD decreased engagement of immunosuppressive pathways, including the PD-1:PD-L1/PD-L2 and PVR/TIGIT axes. These findings suggest that SCD inhibition could be an effective strategy to intrinsically reduce tumor growth and reprogram anti-tumor immunity in the brain microenvironment to treat BCBM.

2.
Clin Transl Sci ; 17(3): e13745, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38488489

RESUMO

The purpose of this study was to investigate changes in the lipidome of patients with sepsis to identify signaling lipids associated with poor outcomes that could be linked to future therapies. Adult patients with sepsis were enrolled within 24h of sepsis recognition. Patients meeting Sepsis-3 criteria were enrolled from the emergency department or intensive care unit and blood samples were obtained. Clinical data were collected and outcomes of rapid recovery, chronic critical illness (CCI), or early death were adjudicated by clinicians. Lipidomic analysis was performed on two platforms, the Sciex™ 5500 device to perform a lipidomic screen of 1450 lipid species and a targeted signaling lipid panel using liquid-chromatography tandem mass spectrometry. For the lipidomic screen, there were 274 patients with sepsis: 192 with rapid recovery, 47 with CCI, and 35 with early deaths. CCI and early death patients were grouped together for analysis. Fatty acid (FA) 12:0 was decreased in CCI/early death, whereas FA 17:0 and 20:1 were elevated in CCI/early death, compared to rapid recovery patients. For the signaling lipid panel analysis, there were 262 patients with sepsis: 189 with rapid recovery, 45 with CCI, and 28 with early death. Pro-inflammatory signaling lipids from ω-6 poly-unsaturated fatty acids (PUFAs), including 15-hydroxyeicosatetraenoic (HETE), 12-HETE, and 11-HETE (oxidation products of arachidonic acid [AA]) were elevated in CCI/early death patients compared to rapid recovery. The pro-resolving lipid mediator from ω-3 PUFAs, 14(S)-hydroxy docosahexaenoic acid (14S-HDHA), was also elevated in CCI/early death compared to rapid recovery. Signaling lipids of the AA pathway were elevated in poor-outcome patients with sepsis and may serve as targets for future therapies.


Assuntos
Ácidos Graxos Ômega-3 , Sepse , Adulto , Humanos , Lipidômica , Ácidos Graxos , Espectrometria de Massas
3.
Nature ; 627(8004): 628-635, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38383790

RESUMO

Interleukin-10 (IL-10) is a key anti-inflammatory cytokine that can limit immune cell activation and cytokine production in innate immune cell types1. Loss of IL-10 signalling results in life-threatening inflammatory bowel disease in humans and mice-however, the exact mechanism by which IL-10 signalling subdues inflammation remains unclear2-5. Here we find that increased saturated very long chain (VLC) ceramides are critical for the heightened inflammatory gene expression that is a hallmark of IL-10 deficiency. Accordingly, genetic deletion of ceramide synthase 2 (encoded by Cers2), the enzyme responsible for VLC ceramide production, limited the exacerbated inflammatory gene expression programme associated with IL-10 deficiency both in vitro and in vivo. The accumulation of saturated VLC ceramides was regulated by a decrease in metabolic flux through the de novo mono-unsaturated fatty acid synthesis pathway. Restoring mono-unsaturated fatty acid availability to cells deficient in IL-10 signalling limited saturated VLC ceramide production and the associated inflammation. Mechanistically, we find that persistent inflammation mediated by VLC ceramides is largely dependent on sustained activity of REL, an immuno-modulatory transcription factor. Together, these data indicate that an IL-10-driven fatty acid desaturation programme rewires VLC ceramide accumulation and aberrant activation of REL. These studies support the idea that fatty acid homeostasis in innate immune cells serves as a key regulatory node to control pathologic inflammation and suggests that 'metabolic correction' of VLC homeostasis could be an important strategy to normalize dysregulated inflammation caused by the absence of IL-10.


Assuntos
Inflamação , Interleucina-10 , Esfingolipídeos , Animais , Humanos , Camundongos , Ceramidas/química , Ceramidas/metabolismo , Ácidos Graxos Insaturados/biossíntese , Ácidos Graxos Insaturados/metabolismo , Homeostase , Imunidade Inata , Inflamação/genética , Inflamação/metabolismo , Inflamação/patologia , Interleucina-10/deficiência , Interleucina-10/genética , Interleucina-10/metabolismo , Proteínas Proto-Oncogênicas c-rel , Esfingolipídeos/metabolismo
4.
J Lipid Res ; 65(2): 100496, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38185217

RESUMO

Pulmonary alveolar proteinosis (PAP) is a life-threatening, rare lung syndrome for which there is no cure and no approved therapies. PAP is a disease of lipid accumulation characterized by alveolar macrophage foam cell formation. While much is known about the clinical presentation, there is a paucity of information regarding temporal changes in lipids throughout the course of disease. Our objectives were to define the detailed lipid composition of alveolar macrophages in PAP patients at the time of diagnosis and during treatment. We performed comprehensive mass spectrometry to profile the lipid signature of alveolar macrophages obtained from three independent mouse models of PAP and from PAP and non-PAP patients. Additionally, we quantified changes in macrophage-associated lipids during clinical treatment of PAP patients. We found remarkable variations in lipid composition in PAP patients, which were consistent with data from three independent mouse models. Detailed lipidomic analysis revealed that the overall alveolar macrophage lipid burden inversely correlated with clinical improvement and response to therapy in PAP patients. Specifically, as PAP patients experienced clinical improvement, there was a notable decrease in the total lipid content of alveolar macrophages. This crucial observation suggests that the levels of these macrophage-associated lipids can be utilized to assess the efficacy of treatment. These findings provide valuable insights into the dysregulated lipid metabolism associated with PAP, offering the potential for lipid profiling to serve as a means of monitoring therapeutic interventions in PAP patients.


Assuntos
Proteinose Alveolar Pulmonar , Animais , Camundongos , Humanos , Proteinose Alveolar Pulmonar/tratamento farmacológico , Proteinose Alveolar Pulmonar/diagnóstico , Proteinose Alveolar Pulmonar/metabolismo , Macrófagos Alveolares , Pulmão/metabolismo , Macrófagos/metabolismo , Lipídeos
5.
J Lipid Res ; 65(2): 100434, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37640283

RESUMO

Adipose tissue is the site of long-term energy storage. During the fasting state, exercise, and cold exposure, the white adipose tissue mobilizes energy for peripheral tissues through lipolysis. The mobilization of lipids from white adipose tissue to the liver can lead to excess triglyceride accumulation and fatty liver disease. Although the white adipose tissue is known to release free fatty acids, a comprehensive analysis of lipids mobilized from white adipocytes in vivo has not been completed. In these studies, we provide a comprehensive quantitative analysis of the adipocyte-secreted lipidome and show that there is interorgan crosstalk with liver. Our analysis identifies multiple lipid classes released by adipocytes in response to activation of lipolysis. Time-dependent analysis of the serum lipidome showed that free fatty acids increase within 30 min of ß3-adrenergic receptor activation and subsequently decrease, followed by a rise in serum triglycerides, liver triglycerides, and several ceramide species. The triglyceride composition of liver is enriched for linoleic acid despite higher concentrations of palmitate in the blood. To further validate that these findings were a specific consequence of lipolysis, we generated mice with conditional deletion of adipose tissue triglyceride lipase exclusively in adipocytes. This loss of in vivo adipocyte lipolysis prevented the rise in serum free fatty acids and hepatic triglycerides. Furthermore, conditioned media from adipocytes promotes lipid remodeling in hepatocytes with concomitant changes in genes/pathways mediating lipid utilization. Together, these data highlight critical role of adipocyte lipolysis in interorgan crosstalk between adipocytes and liver.


Assuntos
Ácidos Graxos não Esterificados , Lipólise , Camundongos , Animais , Lipólise/fisiologia , Ácidos Graxos não Esterificados/metabolismo , Lipidômica , Adipócitos/metabolismo , Tecido Adiposo/metabolismo , Fígado/metabolismo , Triglicerídeos/metabolismo
6.
Science ; 382(6671): eadf0966, 2023 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-37943936

RESUMO

Intestinal absorption is an important contributor to systemic cholesterol homeostasis. Niemann-Pick C1 Like 1 (NPC1L1) assists in the initial step of dietary cholesterol uptake, but how cholesterol moves downstream of NPC1L1 is unknown. We show that Aster-B and Aster-C are critical for nonvesicular cholesterol movement in enterocytes. Loss of NPC1L1 diminishes accessible plasma membrane (PM) cholesterol and abolishes Aster recruitment to the intestinal brush border. Enterocytes lacking Asters accumulate PM cholesterol and show endoplasmic reticulum cholesterol depletion. Aster-deficient mice have impaired cholesterol absorption and are protected against diet-induced hypercholesterolemia. Finally, the Aster pathway can be targeted with a small-molecule inhibitor to manipulate cholesterol uptake. These findings identify the Aster pathway as a physiologically important and pharmacologically tractable node in dietary lipid absorption.


Assuntos
Colesterol na Dieta , Enterócitos , Absorção Intestinal , Proteínas de Membrana Transportadoras , Animais , Camundongos , Transporte Biológico , Colesterol na Dieta/metabolismo , Absorção Intestinal/efeitos dos fármacos , Absorção Intestinal/fisiologia , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Camundongos Endogâmicos C57BL , Enterócitos/metabolismo , Receptores X do Fígado/metabolismo , Humanos , Jejuno/metabolismo , Camundongos Knockout
8.
Nat Metab ; 5(9): 1578-1594, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37697054

RESUMO

Lipids can be of endogenous or exogenous origin and affect diverse biological functions, including cell membrane maintenance, energy management and cellular signalling. Here, we report >800 lipid species, many of which are associated with health-to-disease transitions in diabetes, ageing and inflammation, as well as cytokine-lipidome networks. We performed comprehensive longitudinal lipidomic profiling and analysed >1,500 plasma samples from 112 participants followed for up to 9 years (average 3.2 years) to define the distinct physiological roles of complex lipid subclasses, including large and small triacylglycerols, ester- and ether-linked phosphatidylethanolamines, lysophosphatidylcholines, lysophosphatidylethanolamines, cholesterol esters and ceramides. Our findings reveal dynamic changes in the plasma lipidome during respiratory viral infection, insulin resistance and ageing, suggesting that lipids may have roles in immune homoeostasis and inflammation regulation. Individuals with insulin resistance exhibit disturbed immune homoeostasis, altered associations between lipids and clinical markers, and accelerated changes in specific lipid subclasses during ageing. Our dataset based on longitudinal deep lipidome profiling offers insights into personalized ageing, metabolic health and inflammation, potentially guiding future monitoring and intervention strategies.


Assuntos
Resistência à Insulina , Humanos , Lipidômica , Envelhecimento , Ceramidas , Inflamação
9.
bioRxiv ; 2023 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-37577539

RESUMO

Background: Hantaviruses - dichotomized into New World (i.e. Andes virus, ANDV; Sin Nombre virus, SNV) and Old-World viruses (i.e. Hantaan virus, HTNV) - are zoonotic viruses transmitted from rodents to humans. Currently, no FDA-approved vaccines against hantaviruses exist. Given the recent breakthrough to human-human transmission by the ANDV, an essential step is to establish an effective pandemic preparedness infrastructure to rapidly identify cell tropism, infective potential, and effective therapeutic agents through systematic investigation. Methods: We established human cell model systems in lung (airway and distal lung epithelial cells), heart (pluripotent stem cell-derived (PSC-) cardiomyocytes), and brain (PSC-astrocytes) cell types and subsequently evaluated ANDV, HTNV and SNV tropisms. Transcriptomic, lipidomic and bioinformatic data analyses were performed to identify the molecular pathogenic mechanisms of viruses in different cell types. This cell-based infection system was utilized to establish a drug testing platform and pharmacogenomic comparisons. Results: ANDV showed broad tropism for all cell types assessed. HTNV replication was predominantly observed in heart and brain cells. ANDV efficiently replicated in human and mouse 3D distal lung organoids. Transcriptomic analysis showed that ANDV infection resulted in pronounced inflammatory response and downregulation of cholesterol biosynthesis pathway in lung cells. Lipidomic profiling revealed that ANDV-infected cells showed reduced level of cholesterol esters and triglycerides. Further analysis of pathway-based molecular signatures showed that, compared to SNV and HTNV, ANDV infection caused drastic lung cell injury responses. A selective drug screening identified STING agonists, nucleoside analogues and plant-derived compounds that inhibited ANDV viral infection and rescued cellular metabolism. In line with experimental results, transcriptome data shows that the least number of total and unique differentially expressed genes were identified in urolithin B- and favipiravir-treated cells, confirming the higher efficiency of these two drugs in inhibiting ANDV, resulting in host cell ability to balance gene expression to establish proper cell functioning. Conclusions: Overall, our study describes advanced human PSC-derived model systems and systems-level transcriptomics and lipidomic data to better understand Old and New World hantaviral tropism, as well as drug candidates that can be further assessed for potential rapid deployment in the event of a pandemic.

10.
Sci Adv ; 9(33): eadg6262, 2023 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-37595033

RESUMO

Lipid synthesis is necessary for formation of epithelial barriers and homeostasis with external microbes. An analysis of the response of human keratinocytes to several different commensal bacteria on the skin revealed that Cutibacterium acnes induced a large increase in essential lipids including triglycerides, ceramides, cholesterol, and free fatty acids. A similar response occurred in mouse epidermis and in human skin affected with acne. Further analysis showed that this increase in lipids was mediated by short-chain fatty acids produced by Cutibacterium acnes and was dependent on increased expression of several lipid synthesis genes including glycerol-3-phosphate-acyltransferase-3. Inhibition or RNA silencing of peroxisome proliferator-activated receptor-α (PPARα), but not PPARß and PPARγ, blocked this response. The increase in keratinocyte lipid content improved innate barrier functions including antimicrobial activity, paracellular diffusion, and transepidermal water loss. These results reveal that metabolites from a common commensal bacterium have a previously unappreciated influence on the composition of epidermal lipids.


Assuntos
Epiderme , Pele , Humanos , Animais , Camundongos , Queratinócitos , Ceramidas , Difusão
11.
bioRxiv ; 2023 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-37503112

RESUMO

Intestinal cholesterol absorption is an important contributor to systemic cholesterol homeostasis. Niemann-Pick C1 Like 1 (NPC1L1), the target of the drug ezetimibe (EZ), assists in the initial step of dietary cholesterol uptake. However, how cholesterol moves downstream of NPC1L1 is unknown. Here we show that Aster-B and Aster-C are critical for non-vesicular cholesterol movement in enterocytes, bridging NPC1L1 at the plasma membrane (PM) and ACAT2 in the endoplasmic reticulum (ER). Loss of NPC1L1 diminishes accessible PM cholesterol in enterocytes and abolishes Aster recruitment to the intestinal brush border. Enterocytes lacking Asters accumulate cholesterol at the PM and display evidence of ER cholesterol depletion, including decreased cholesterol ester stores and activation of the SREBP-2 transcriptional pathway. Aster-deficient mice have impaired cholesterol absorption and are protected against diet-induced hypercholesterolemia. Finally, we show that the Aster pathway can be targeted with a small molecule inhibitor to manipulate dietary cholesterol uptake. These findings identify the Aster pathway as a physiologically important and pharmacologically tractable node in dietary lipid absorption. One-Sentence Summary: Identification of a targetable pathway for regulation of dietary cholesterol absorption.

12.
Anaerobe ; 82: 102760, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37451427

RESUMO

OBJECTIVES: Many bacterial species naturally take up DNA from their surroundings and recombine it into their chromosome through homologous gene transfer (HGT) to aid in survival and gain advantageous functions. Herein we present the first characterization of Type IV pili facilitated natural competence in Fusobacterium nucleatum, which is a Gram-negative, anaerobic bacterium that participates in a range of infections and diseases including periodontitis, preterm birth, and cancer. METHODS: Here we used bioinformatics on multiple Fusobacterium species, as well as molecular genetics to characterize natural competence in strain F. nucleatum subsp. nucleatum ATCC 23726. RESULTS: We bioinformatically identified components of the Type IV conjugal pilus machinery and show this is a conserved system within the Fusobacterium genus. We next validate Type IV pili in natural competence in F. nucleatum ATCC 23726 and show that gene deletions in key components of pilus deployment (pilQ) and cytoplasmic DNA import (comEC) abolish DNA uptake and chromosomal incorporation. We next show that natural competence may require native F. nucleatum DNA methylation to bypass restriction modification systems and allow subsequent genomic homologous recombination. CONCLUSIONS: In summary, this proof of principle study provides the first characterization of natural competence in Fusobacterium nucleatum and highlights the potential to exploit this DNA import mechanism as a genetic tool to characterize virulence mechanisms of an opportunistic oral pathogen.


Assuntos
Infecções por Fusobacterium , Nascimento Prematuro , Recém-Nascido , Humanos , Feminino , Fusobacterium nucleatum/metabolismo , Composição de Bases , Análise de Sequência de DNA , Filogenia , RNA Ribossômico 16S , Fusobacterium , DNA Bacteriano/genética , Infecções por Fusobacterium/microbiologia
13.
Cancer Cell ; 41(6): 1048-1060.e9, 2023 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-37236196

RESUMO

Malignant tumors exhibit heterogeneous metabolic reprogramming, hindering the identification of translatable vulnerabilities for metabolism-targeted therapy. How molecular alterations in tumors promote metabolic diversity and distinct targetable dependencies remains poorly defined. Here we create a resource consisting of lipidomic, transcriptomic, and genomic data from 156 molecularly diverse glioblastoma (GBM) tumors and derivative models. Through integrated analysis of the GBM lipidome with molecular datasets, we identify CDKN2A deletion remodels the GBM lipidome, notably redistributing oxidizable polyunsaturated fatty acids into distinct lipid compartments. Consequently, CDKN2A-deleted GBMs display higher lipid peroxidation, selectively priming tumors for ferroptosis. Together, this study presents a molecular and lipidomic resource of clinical and preclinical GBM specimens, which we leverage to detect a therapeutically exploitable link between a recurring molecular lesion and altered lipid metabolism in GBM.


Assuntos
Ferroptose , Glioblastoma , Metabolismo dos Lipídeos , Humanos , Inibidor p16 de Quinase Dependente de Ciclina/genética , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Ferroptose/genética , Ferroptose/fisiologia , Perfilação da Expressão Gênica , Glioblastoma/genética , Glioblastoma/metabolismo , Glioblastoma/patologia , Metabolismo dos Lipídeos/genética , Metabolismo dos Lipídeos/fisiologia , Recidiva Local de Neoplasia
14.
bioRxiv ; 2023 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-37214856

RESUMO

Unchecked chronic inflammation is the underlying cause of many diseases, ranging from inflammatory bowel disease to obesity and neurodegeneration. Given the deleterious nature of unregulated inflammation, it is not surprising that cells have acquired a diverse arsenal of tactics to limit inflammation. IL-10 is a key anti-inflammatory cytokine that can limit immune cell activation and cytokine production in innate immune cell types; however, the exact mechanism by which IL-10 signaling subdues inflammation remains unclear. Here, we find that IL-10 signaling constrains sphingolipid metabolism. Specifically, we find increased saturated very long chain (VLC) ceramides are critical for the heightened inflammatory gene expression that is a hallmark of IL-10-deficient macrophages. Genetic deletion of CerS2, the enzyme responsible for VLC ceramide production, limited exacerbated inflammatory gene expression associated with IL-10 deficiency both in vitro and in vivo , indicating that "metabolic correction" is able to reduce inflammation in the absence of IL-10. Surprisingly, accumulation of saturated VLC ceramides was regulated by flux through the de novo mono-unsaturated fatty acid (MUFA) synthesis pathway, where addition of exogenous MUFAs could limit both saturated VLC ceramide production and inflammatory gene expression in the absence of IL-10 signaling. Together, these studies mechanistically define how IL-10 signaling manipulates fatty acid metabolism as part of its molecular anti-inflammatory strategy and could lead to novel and inexpensive approaches to regulate aberrant inflammation.

16.
Sci Transl Med ; 15(679): eabq6288, 2023 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-36652537

RESUMO

Deregulated de novo lipid synthesis (DNLS) is a potential druggable vulnerability in glioblastoma (GBM), a highly lethal and incurable cancer. Yet the molecular mechanisms that determine susceptibility to DNLS-targeted therapies remain unknown, and the lack of brain-penetrant inhibitors of DNLS has prevented their clinical evaluation as GBM therapeutics. Here, we report that YTX-7739, a clinical-stage inhibitor of stearoyl CoA desaturase (SCD), triggers lipotoxicity in patient-derived GBM stem-like cells (GSCs) and inhibits fatty acid desaturation in GSCs orthotopically implanted in mice. When administered as a single agent, or in combination with temozolomide (TMZ), YTX-7739 showed therapeutic efficacy in orthotopic GSC mouse models owing to its lipotoxicity and ability to impair DNA damage repair. Leveraging genetic, pharmacological, and physiological manipulation of key signaling nodes in gliomagenesis complemented with shotgun lipidomics, we show that aberrant MEK/ERK signaling and its repression of the energy sensor AMP-activated protein kinase (AMPK) primarily drive therapeutic vulnerability to SCD and other DNLS inhibitors. Conversely, AMPK activation mitigates lipotoxicity and renders GSCs resistant to the loss of DNLS, both in culture and in vivo, by decreasing the saturation state of phospholipids and diverting toxic lipids into lipid droplets. Together, our findings reveal mechanisms of metabolic plasticity in GSCs and provide a framework for the rational integration of DNLS-targeted GBM therapies.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Animais , Camundongos , Glioblastoma/genética , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Proteínas Quinases Ativadas por AMP/uso terapêutico , Linhagem Celular Tumoral , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto , Dano ao DNA , Lipídeos , Células-Tronco Neoplásicas/metabolismo
17.
Diabetes Obes Metab ; 25(2): 581-585, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36309953

RESUMO

BACKGROUND: For patients using basal-bolus insulin therapy, it is widespread clinical practice to aim for a 50-50 ratio between basal and total daily bolus. However, this practice was based on a small study of individuals without diabetes. To assess the rule in real-world practice, we retrospectively analyzed patients on basal-bolus therapy that was adjusted at least weekly by an artificial intelligence-driven titration within the d-Nav® Insulin Management Technology. MATERIALS AND METHODS: We obtained de-identified data from the Diabetes Centre of Ulster Hospital for patients with four inclusion criteria: type 2 Diabetes (T2D), on d-Nav >6 months, on basal-bolus insulin therapy >80% of the time (based on insulin analogs), and no gap in data >3 months. RESULTS: We assembled a cohort of 306 patients, followed by the d-Nav service for 3.4 ± 1.8 years (mean ± SD), corresponding to about 180 autonomous insulin dose titrations and about 5000 autonomous individual dose recommendations per patient. After an initial run-in period, mean glycated hemoglobin (HbA1c) values in the cohort were maintained close to 7%. Surprisingly, in just over three-quarters of the cohort, the average basal insulin fraction was <50%; in half of the cohort average basal insulin fraction <41.2%; and in one-quarter the basal insulin fraction was <33.6%. Further, the basal insulin fraction did not remain static over time. In half of the patients, the basal insulin fraction varied by ≥1.9×; and, in 25% of the patients, ≥2.5×. CONCLUSION: Our data show that a 50-50 ratio of basal-to-bolus insulin does not generally apply to patients with T2D who successfully maintain stable glycemia. Therefore, the 50-50 ratio should not serve as an ongoing treatment guide. Moreover, our results emphasize the importance of at least weekly insulin titrations.


Assuntos
Diabetes Mellitus Tipo 2 , Humanos , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/induzido quimicamente , Hipoglicemiantes/uso terapêutico , Insulina Glargina/uso terapêutico , Controle Glicêmico , Estudos Retrospectivos , Inteligência Artificial , Glicemia , Resultado do Tratamento , Insulina/uso terapêutico
18.
J Bacteriol ; 204(12): e0027922, 2022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-36326270

RESUMO

Bacterial restriction-modification (R-M) systems are a first-line immune defense against foreign DNA from viruses and other bacteria. While R-M systems are critical in maintaining genome integrity, R-M nucleases unfortunately present significant barriers to targeted genetic modification. Bacteria of the genus Fusobacterium are oral, Gram-negative, anaerobic, opportunistic pathogens that are implicated in the progression and severity of multiple cancers and tissue infections, yet our understanding of their direct roles in disease have been severely hindered by their genetic recalcitrance. Here, we demonstrate a path to overcome these barriers in Fusobacterium by using native DNA methylation as a host mimicry strategy to bypass R-M system cleavage of transformed plasmid DNA. We report the identification, characterization, and successful use of Fusobacterium nucleatum type II and III DNA methyltransferase (MTase) enzymes to produce a multifold increase in gene knockout efficiency in the strain Fusobacterium nucleatum subsp. nucleatum 23726, as well as the first system for efficient gene knockouts and complementations in F. nucleatum subsp. nucleatum 25586. We show plasmid protection can be accomplished in vitro with purified enzymes, as well as in vivo in an Escherichia coli host that constitutively expresses F. nucleatum subsp. nucleatum MTase enzymes. In summary, this proof-of-concept study characterizes specific MTases that are critical for bypassing R-M systems and has enhanced our understanding of enzyme combinations that could be used to genetically modify clinical isolates of Fusobacterium that have thus far been inaccessible to molecular characterization. IMPORTANCE Fusobacterium nucleatum is an oral opportunistic pathogen associated with diseases that include cancer and preterm birth. Our understanding of how this bacterium modulates human disease has been hindered by a lack of genetic systems. Here, we show that F. nucleatum DNA methyltransferase-modified plasmid DNA overcomes the transformation barrier and has allowed the development of a genetic system in a previously inaccessible strain. We present a strategy that could potentially be expanded to enable the genetic modification of highly recalcitrant strains, thereby fostering investigational studies to uncover novel host-pathogen interactions in Fusobacterium.


Assuntos
Enzimas de Restrição-Modificação do DNA , Fusobacterium nucleatum , Metiltransferases , Metilação de DNA , Enzimas de Restrição-Modificação do DNA/genética , Fusobacterium nucleatum/genética , Metiltransferases/genética
20.
Cell Chem Biol ; 29(9): 1409-1418.e6, 2022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-35809566

RESUMO

Ferroptosis is an important mediator of pathophysiological cell death and an emerging target for cancer therapy. Whether ferroptosis sensitivity is governed by a single regulatory mechanism is unclear. Here, based on the integration of 24 published chemical genetic screens combined with targeted follow-up experimentation, we find that the genetic regulation of ferroptosis sensitivity is highly variable and context-dependent. For example, the lipid metabolic gene acyl-coenzyme A (CoA) synthetase long chain family member 4 (ACSL4) appears far more essential for ferroptosis triggered by direct inhibition of the lipid hydroperoxidase glutathione peroxidase 4 (GPX4) than by cystine deprivation. Despite this, distinct pro-ferroptotic stimuli converge upon a common lethal effector mechanism: accumulation of lipid peroxides at the plasma membrane. These results indicate that distinct genetic mechanisms regulate ferroptosis sensitivity, with implications for the initiation and analysis of this process in vivo.


Assuntos
Ferroptose , Linhagem Celular Tumoral , Coenzima A , Coenzima A Ligases/metabolismo , Cistina , Peróxidos Lipídicos , Fosfolipídeo Hidroperóxido Glutationa Peroxidase
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...