Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
Mol Nutr Food Res ; 65(1): e1900934, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32246887

RESUMO

Advanced glycation end products (AGEs) are a heterogeneous group of molecules produced, non-enzymatically, from the interaction between reducing sugars and the free amino groups of proteins, nucleic acids, and lipids. AGEs are formed as a normal consequence of metabolism but can also be absorbed from the diet. They have been widely implicated in the complications of diabetes affecting cardiovascular health, the nervous system, eyes, and kidneys. Increased levels of AGEs are also detrimental to metabolic health and may contribute to the metabolic abnormalities induced by the Western diet, which is high in processed foods and represents a significant source of AGEs. While increased AGE levels are a consequence of diabetic hyperglycaemia, AGEs themselves activate signaling pathways, which compromise insulin signaling and pancreatic ß-cell function, thus, contributing to the development of type 2 diabetes mellitus (T2DM). Furthermore, AGEs may also contribute to the obesogenic effects of the Western diet by promoting hypothalamic inflammation and disrupting the central control of energy balance. Here, the role of dietary AGEs in metabolic dysfunction is reviewed with a focus on the mechanisms underpinning their detrimental role in insulin resistance, pancreatic ß-cell dysfunction, hypothalamic control of energy balance, and the pathogenesis of T2DM and obesity.


Assuntos
Diabetes Mellitus Tipo 2/metabolismo , Enzimas/metabolismo , Produtos Finais de Glicação Avançada/metabolismo , Obesidade/metabolismo , Antígenos de Neoplasias/metabolismo , Culinária , Dieta , Dieta Ocidental/efeitos adversos , Humanos , Inflamação/etiologia , Células Secretoras de Insulina/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Obesidade/etiologia
2.
BMJ Open Sci ; 4(1): e100108, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-35047694

RESUMO

INTRODUCTION AND OBJECTIVE: The Western diet that comprises high levels of long-chain saturated fats and sugar is associated not only with metabolic disorders such as obesity and type 2 diabetes but also has been recently linked to brain changes and cognitive dysfunction. However, in animal studies, reported effects are variable, and the mechanisms underlying these effects are unclear. In the proposed review, we aim to summarise the diverse evidence of the effects of so-called 'high-fat' and ketogenic diets on behavioural measures of cognition in postweaning mice and rats, relative to animals on standard diets and to determine potential underlying mechanisms of high-fat diet-induced effects. SEARCH STRATEGY: A comprehensive search strategy was designed to retrieve studies reporting use of a high-fat or ketogenic diet in postweaning mice and rats that included cognitive assessments. Three databases (Medline, SCOPUS and Web of Science) were searched and 4487 unique references were retrieved. SCREENING AND ANNOTATION: Studies were screened for inclusion by two independent reviewers, with 330 studies retained for analysis. Characteristics of disease model choice, experimental design, intervention use and outcome assessment are to be extracted using the Systematic Review Facility (http://syrf.org.uk/) tool. Studies will be assessed for study quality and risk of bias and confidence of mechanistic involvement. DATA MANAGEMENT AND REPORTING: For cognitive outcomes, effect sizes will be calculated using normalised mean difference and summarised using a random effects model. The contribution of potential sources of heterogeneity to the observed effects of diet on cognition will be assessed using multivariable meta-regression, with partitioning of heterogeneity as a sensitivity analysis. A preliminary version of this protocol was published on 9 April 2019 on the Collaborative Approach to Meta-Analysis and Review of Animal Data from Experimental Studies website (http://www.dcn.ed.ac.uk/camarades/research.html%23protocols). ETHICS AND DISSEMINATION: No ethical approval is required as there are no subjects in the proposed study.

3.
Nutr Rev ; 78(4): 261-277, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-31532491

RESUMO

Diet-induced hypothalamic inflammation, which leads to hypothalamic dysfunction and a loss of regulation of energy balance, is emerging as a potential driver of obesity. Excessive intake of long-chain saturated fatty acids is held to be the causative dietary component in hypothalamic inflammation. This review summarizes current evidence on the role of long-chain saturated fatty acids in promoting hypothalamic inflammation and the related induction of central insulin and leptin insensitivity. Particularly, the present review focuses on the molecular mechanisms linking long-chain saturated fatty acids and hypothalamic inflammation, emphasizing the metabolic fate of fatty acids and the resulting lipotoxicity, which is a key driver of hypothalamic dysfunction. In conclusion, long-chain saturated fatty acids are key nutrients that promote hypothalamic inflammation and dysfunction by fostering the build-up of lipotoxic lipid species, such as ceramide. Furthermore, when long-chain saturated fatty acids are consumed in combination with high levels of refined carbohydrates, the proinflammatory effects are exacerbated via a mechanism that relies on the formation of advanced glycation end products.


Assuntos
Gorduras na Dieta , Ácidos Graxos/metabolismo , Hipotálamo/metabolismo , Obesidade/metabolismo , Animais , Dieta Hiperlipídica , Metabolismo Energético , Humanos , Insulina/metabolismo , Resistência à Insulina , Leptina/metabolismo
4.
Nutr Neurosci ; 23(4): 321-334, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30032721

RESUMO

A high-fat diet induces hypothalamic inflammation in rodents which, in turn, contributes to the development of obesity by eliciting both insulin and leptin resistance. However, the mechanism by which long-chain saturated fatty acids trigger inflammation is still contentious. To elucidate this mechanism, the effect of fatty acids on the expression of the pro-inflammatory cytokines IL-6 and TNFα was investigated in the mHypoE-N42 hypothalamic cell line (N42). N42 cells were treated with lauric acid (LA) and palmitic acid (PA). PA challenge was carried out in the presence of either a TLR4 inhibitor, a ceramide synthesis inhibitor (L-cycloserine), oleic acid (OA) or eicosapentaenoic acid (EPA). Intracellular ceramide accumulation was quantified using LC-ESI-MS/MS. PA but not LA upregulated IL-6 and TNFα. L-cycloserine, OA and EPA all counteracted PA-induced intracellular ceramide accumulation leading to a downregulation of IL-6 and TNFα. However, a TLR4 inhibitor failed to inhibit PA-induced upregulation of pro-inflammatory cytokines.In conclusion, PA induced the expression of IL-6 and TNFα in N42 neuronal cells independently of TLR4 but, partially, via ceramide synthesis with OA and EPA being anti-inflammatory by decreasing PA-induced intracellular ceramide build-up. Thus, ceramide accumulation represents one on the mechanisms by which PA induces inflammation in neurons.


Assuntos
Ceramidas/biossíntese , Encefalite/metabolismo , Hipotálamo/metabolismo , Ácido Palmítico/administração & dosagem , Ácido Palmítico/metabolismo , Receptor 4 Toll-Like/metabolismo , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular , Encefalite/induzido quimicamente , Hipotálamo/efeitos dos fármacos , Mediadores da Inflamação/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Ratos Sprague-Dawley
5.
Nutr Metab (Lond) ; 16: 57, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31462902

RESUMO

BACKGROUND: The rise in global obesity makes it crucial to understand how diet drives obesity-related health conditions, such as premature cognitive decline and Alzheimer's disease (AD). In AD hippocampal-dependent episodic memory is one of the first types of memory to be impaired. Previous studies have shown that in mice fed a high-fat diet (HFD) episodic memory is rapidly but reversibly impaired. METHODS: In this study we use hippocampal proteomics to investigate the effects of HFD in the hippocampus. Mice were fed either a low-fat diet (LFD) or HFD containing either 10% or 60% (Kcal) from fat for 3 days, 1 week or 2 weeks. One group of mice were fed the HFD for 1 week and then returned to the LFD for a further week. Primary hippocampal cultures were challenged with palmitic acid (PA), the most common long-chain saturated FA in the Western diet, and with the anti-inflammatory, n-3 polyunsaturated FA, docosahexaenoic acid (DHA), or a combination of the two to ascertain effects of these fatty acids on dendritic structure. RESULTS: HFD-induced changes occur in hippocampal proteins involved in metabolism, inflammation, cell stress, cell signalling, and the cytoskeleton after 3 days, 1 week and 2 weeks of HFD. Replacement of the HFD after 1 week by a low-fat diet (LFD) for a further week resulted in partial recovery of the hippocampal proteome. Microtubule-associated protein 2 (MAP2), one of the earliest proteins changed, was used to investigate the impact of fatty acids (FAs) on hippocampal neuronal morphology. PA challenge resulted in shorter and less arborised dendrites while DHA had no effect when applied alone but counteracted the effects of PA when FAs were used in combination. Dendritic morphology recovered when PA was removed from the cell culture media. CONCLUSION: This study provides evidence for the rapid and reversible effects of diet on the hippocampal proteome and the impact of PA and DHA on dendritic structure.

6.
Nutr Metab (Lond) ; 16: 26, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31168311

RESUMO

BACKGROUND: Prolonged over-consumption of a high-fat diet (HFD) commonly leads to obesity and insulin resistance. However, even 3 days of HFD consumption has been linked to inflammation within the key homeostatic brain region, the hypothalamus. METHODS: Mice were fed either a low-fat diet (LFD) or HFD containing 10% or 60% (Kcal) respectively from fat for 3 days. Mice were weighed, food intake measured and glucose tolerance calculated using intraperitoneal glucose tolerance tests (IPGTT). Proteomic analysis was carried out to determine if hypothalamic proteins were changed by a HFD. The direct effects of dietary fatty acids on mitochondrial morphology and on one of the proteins most changed by a HFD, dihydropyrimidinase-related protein 2 (DRP-2) a microtubule-associated protein which regulates microtubule dynamics, were also tested in mHypoE-N42 (N42) neuronal cells challenged with palmitic acid (PA) and oleic acid (OA). RESULTS: Mice on the HFD, as expected, showed increased adiposity and glucose intolerance. Hypothalamic proteomic analysis revealed changes in 104 spots after 3 days on HFD, which, when identified by LC/MS/MS, were found to represent 78 proteins mainly associated with cytoskeleton and synaptic plasticity, stress response, glucose metabolism and mitochondrial function. Over half of the changed proteins have also been reported to be changed in neurodegenerative conditions such as Alzheimer's disease. Also,in N42 neurons mitochondrial morphology and DRP-2 levels were altered by PA but not by OA. CONCLUSION: These results demonstrate that within 3 days, there is a relatively large effect of HFD on the hypothalamic proteome indicative of cellular stress, altered synaptic plasticity and mitochondrial function, but not inflammation. Changes in N42 cells show an effect of PA but not OA on DRP-2 and on mitochondrial morphology indicating that long-chain saturated fatty acids damage neuronal function.

7.
Genes Nutr ; 13: 28, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30519364

RESUMO

BACKGROUND: Energy homeostasis is regulated by the hypothalamus but fails when animals are fed a high-fat diet (HFD), and leptin insensitivity and obesity develops. To elucidate the possible mechanisms underlying these effects, a microarray-based transcriptomics approach was used to identify novel genes regulated by HFD and leptin in the mouse hypothalamus. RESULTS: Mouse global array data identified serpinA3N as a novel gene highly upregulated by both a HFD and leptin challenge. In situ hybridisation showed serpinA3N expression upregulation by HFD and leptin in all major hypothalamic nuclei in agreement with transcriptomic gene expression data. Immunohistochemistry and studies in the hypothalamic clonal neuronal cell line, mHypoE-N42 (N42), confirmed that alpha 1-antichymotrypsin (α1AC), the protein encoded by serpinA3, is localised to neurons and revealed that it is secreted into the media. SerpinA3N expression in N42 neurons is upregulated by palmitic acid and by leptin, together with IL-6 and TNFα, and all three genes are downregulated by the anti-inflammatory monounsaturated fat, oleic acid. Additionally, palmitate upregulation of serpinA3 in N42 neurons is blocked by the NFκB inhibitor, BAY11, and the upregulation of serpinA3N expression in the hypothalamus by HFD is blunted in IL-1 receptor 1 knockout (IL-1R1 -/- ) mice. CONCLUSIONS: These data demonstrate that serpinA3 expression is implicated in nutritionally mediated hypothalamic inflammation.

8.
Sci Rep ; 8(1): 15566, 2018 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-30349136

RESUMO

Dietary fibers (DF) can prevent obesity in rodents fed a high-fat diet (HFD). Their mode of action is not fully elucidated, but the gut microbiota have been implicated. This study aimed to identify the effects of seven dietary fibers (barley beta-glucan, apple pectin, inulin, inulin acetate ester, inulin propionate ester, inulin butyrate ester or a combination of inulin propionate ester and inulin butyrate ester) effective in preventing diet-induced obesity and links to differences in cecal bacteria and host gene expression. Mice (n = 12) were fed either a low-fat diet (LFD), HFD or a HFD supplemented with the DFs, barley beta-glucan, apple pectin, inulin, inulin acetate ester, inulin propionate ester, inulin butyrate ester or a combination of inulin propionate ester and inulin butyrate ester for 8 weeks. Cecal bacteria were determined by Illumina MiSeq sequencing of 16S rRNA gene amplicons. Host responses, body composition, metabolic markers and gene transcription (cecum and liver) were assessed post intervention. HFD mice showed increased adiposity, while all of the DFs prevented weight gain. DF specific differences in cecal bacteria were observed. Results indicate that diverse DFs prevent weight gain on a HFD, despite giving rise to different cecal bacteria profiles. Conversely, common host responses to dietary fiber observed are predicted to be important in improving barrier function and genome stability in the gut, maintaining energy homeostasis and reducing HFD induced inflammatory responses in the liver.


Assuntos
Fibras na Dieta/uso terapêutico , Microbioma Gastrointestinal , Obesidade/dietoterapia , Animais , Ceco/metabolismo , Ceco/microbiologia , Fibras na Dieta/administração & dosagem , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/microbiologia
9.
Sci Rep ; 8(1): 11976, 2018 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-30097632

RESUMO

Alzheimer's disease is a leading cause of morbidity and mortality with no cure and only limited treatment available. Obesity and type 2 diabetes are positively associated with the development of premature cognitive decline and Alzheimer's disease, linking diet with these conditions. Here we demonstrate that in mice episodic memory, together with spatial and contextual associative memory, is compromised after only one day of high-fat diet. However, object memory remains intact. This shows not only a more rapid effect than previously reported but also that more complex memories are at higher risk of being compromised by a high-fat diet. In addition, we show that these memory deficits are rapidly reversed by switching mice from a high-fat diet back to a low-fat diet. These findings have important implications for the contribution of nutrition to the development of cognitive decline and Alzheimer's disease.


Assuntos
Dieta Hiperlipídica , Memória Episódica , Tecido Adiposo/metabolismo , Doença de Alzheimer/psicologia , Animais , Comportamento Animal , Peso Corporal , Disfunção Cognitiva , Modelos Animais de Doenças , Glucose/metabolismo , Transtornos da Memória/etiologia , Transtornos da Memória/psicologia , Camundongos , Obesidade/psicologia
10.
Int J Antimicrob Agents ; 52(5): 692-696, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30075292

RESUMO

Clay is a substance historically utilized by indigenous cultures for the treatment of superficial wound infections. This study evaluated the effects of a recently identified clay - OMT Blue Clay - against staphylococci, streptococci, Enterobacteriaceae and non-fermenting Gram-negative bacilli. The clay and its aqueous leachate were evaluated against the bacteria in biofilm and planktonic states. Time-kill studies were used to assess planktonic activity. Biofilms on medical-grade Teflon discs were treated with a hydrated clay suspension or leachate. For the planktonic studies, clay and leachate exhibited bactericidal activity against all strains tested, with the exception of leachate against Staphylococcus aureus IDRL-6169 and USA300. All strains treated with clay suspension and leachate resulted in statistically significant biofilm population reductions compared with controls, except S. aureus IDRL-6169 and USA300 (P ≤ 0.05). OMT Blue Clay and its aqueous leachate exhibited bactericidal activity against a range of human pathogens in the planktonic and biofilm states.


Assuntos
Antibacterianos/farmacologia , Infecções Bacterianas/microbiologia , Argila , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Infecção dos Ferimentos/microbiologia , Antibacterianos/isolamento & purificação , Biofilmes/efeitos dos fármacos , Bactérias Gram-Negativas/isolamento & purificação , Bactérias Gram-Positivas/isolamento & purificação , Humanos , Viabilidade Microbiana/efeitos dos fármacos
11.
ISME J ; 12(2): 610-622, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29192904

RESUMO

The diet provides carbohydrates that are non-digestible in the upper gut and are major carbon and energy sources for the microbial community in the lower intestine, supporting a complex metabolic network. Fermentation produces the short-chain fatty acids (SCFAs) acetate, propionate and butyrate, which have health-promoting effects for the human host. Here we investigated microbial community changes and SCFA production during in vitro batch incubations of 15 different non-digestible carbohydrates, at two initial pH values with faecal microbiota from three different human donors. To investigate temporal stability and reproducibility, a further experiment was performed 1 year later with four of the carbohydrates. The lower pH (5.5) led to higher butyrate and the higher pH (6.5) to more propionate production. The strongest propionigenic effect was found with rhamnose, followed by galactomannans, whereas fructans and several α- and ß-glucans led to higher butyrate production. 16S ribosomal RNA gene-based quantitative PCR analysis of 22 different microbial groups together with 454 sequencing revealed significant stimulation of specific bacteria in response to particular carbohydrates. Some changes were ascribed to metabolite cross-feeding, for example, utilisation by Eubacterium hallii of 1,2-propanediol produced from fermentation of rhamnose by Blautia spp. Despite marked inter-individual differences in microbiota composition, SCFA production was surprisingly reproducible for different carbohydrates, indicating a level of functional redundancy. Interestingly, butyrate formation was influenced not only by the overall % butyrate-producing bacteria in the community but also by the initial pH, consistent with a pH-dependent shift in the stoichiometry of butyrate production.


Assuntos
Bactérias/metabolismo , Carboidratos da Dieta/metabolismo , Ácidos Graxos Voláteis/metabolismo , Microbiota , Bactérias/genética , Bactérias/isolamento & purificação , Butiratos/metabolismo , Eubacterium/metabolismo , Fezes/microbiologia , Fermentação , Galactose/análogos & derivados , Humanos , Mananas/metabolismo , Propionatos/metabolismo , Reprodutibilidade dos Testes , Ramnose/metabolismo
12.
Compr Physiol ; 7(2): 741-764, 2017 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-28333388

RESUMO

The ability of the brain to directly control glucose levels in the blood independently of its effects on food intake and body weight has been known ever since 1854 when Claude Bernard, a French physiologist, discovered that lesioning the floor of the fourth ventricle in rabbits led to a rise of sugar in the blood. Despite this outstanding discovery at that time, it took more than 140 years before progress started to be made in identifying the underlying mechanisms of brain-mediated control of glucose homeostasis. Technological advances including the generation of brain insulin receptor null mice revealed that insulin action specifically in the central nervous system is required for the regulation of glucose metabolism, particularly in the modulation of hepatic glucose production. Furthermore, it was established that the hormone leptin, known for its role in regulating food intake and body weight, actually exerts its most potent effects on glucose metabolism, and that this function of leptin is mediated centrally. Under certain circumstances, high levels of leptin can replicate the actions of insulin, thus challenging the idea that life without insulin is impossible. Disruptions of central insulin signaling and glucose metabolism not only lead to impairments in whole body glucose homeostasis, they also have other serious consequences, including the development of Alzheimer's disease which is sometimes referred to as type 3 diabetes reflecting its common etiology with type 2 diabetes. © 2017 American Physiological Society. Compr Physiol 7:471-764, 2017.


Assuntos
Glicemia/metabolismo , Doença de Alzheimer/etiologia , Doença de Alzheimer/metabolismo , Animais , Dieta Hiperlipídica/efeitos adversos , Ácidos Graxos/efeitos adversos , Homeostase/fisiologia , Humanos , Doenças Hipotalâmicas/etiologia , Inflamação/etiologia , Insulina/fisiologia , Leptina/metabolismo , Leptina/fisiologia , Receptor de Insulina/fisiologia , Via de Sinalização Wnt/fisiologia
13.
Environ Sci Technol ; 51(4): 2401-2408, 2017 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-28121138

RESUMO

The problems of antibiotic overuse compel us to seek alternative antibacterial agents. Some clays have been shown to kill antibiotic-resistant human pathogens and may provide an alternative to known antibiotics. Here we show that Al toxicity plays a central role in the antibacterial action of a kaolin-rich clay from the Colombian Amazon (AMZ). Antibacterial susceptibility testing shows minimum inhibitory concentrations of 80 mg/mL against a model Escherichia coli (ATCC 25922). The clay buffered the media pH to ∼4.6 and Eh values to +360 mV. Chemical analysis of AMZ and bacteria showed that Al, P, and transition metals (Fe, Cu, Mn, and Zn) were exchanged during incubation at 37 °C. Only Al derived from the clay exceeded the minimum inhibitory concentrations for E. coli under acidic conditions. Ion imaging showed elevated Al levels in the bacterial membrane, and high intracellular Fe levels, relative to those of untreated controls. Phosphorus depletion in E. coli after reaction with AMZ, together with evidence of membrane permeabilization, suggests that Al reacts with membrane phospholipids, enhancing intracellular transport of metals. These results highlight the importance of dissolved Al for amplifying the toxicity of transition metals to human pathogens.


Assuntos
Alumínio , Antibacterianos/farmacologia , Silicatos de Alumínio/química , Escherichia coli/efeitos dos fármacos , Humanos , Metais , Testes de Sensibilidade Microbiana
14.
J Nutr Biochem ; 37: 20-29, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27592202

RESUMO

The sirtuin (SIRT)/nicotinamide adenine dinucleotide (NAD) system is implicated in development of type 2 diabetes (T2D) and diet-induced obesity, a major risk factor for T2D. Mechanistic links have not yet been defined. SIRT/NAD system gene expression and NAD/NADH levels were measured in liver, white adipose tissue (WAT) and skeletal muscle from mice fed either a low-fat diet or high-fat diet (HFD) for 3 days up to 16 weeks. An in-house custom-designed multiplex gene expression assay assessed all 7 mouse SIRTs (SIRT1-7) and 16 enzymes involved in conversion of tryptophan, niacin, nicotinamide riboside and metabolic precursors to NAD. Significantly altered transcription was correlated with body weight, fat mass, plasma lipids and hormones. Regulation of the SIRT/NAD system was associated with early (SIRT4, SIRT7, NAPRT1 and NMNAT2) and late phases (NMNAT3, NMRK2, ABCA1 and CD38) of glucose intolerance. TDO2 and NNMT were identified as markers of HFD consumption. Altered regulation of the SIRT/NAD system in response to HFD was prominent in liver compared with WAT or muscle. Multiple components of the SIRTs and NAD biosynthetic enzymes network respond to consumption of dietary fat. Novel molecular targets identified above could direct strategies for dietary/therapeutic interventions to limit metabolic dysfunction and development of T2D.


Assuntos
Regulação Enzimológica da Expressão Gênica , Fígado/enzimologia , Proteínas Mitocondriais/metabolismo , Nicotinamida N-Metiltransferase/metabolismo , Obesidade/metabolismo , Sirtuínas/metabolismo , Triptofano Oxigenase/metabolismo , Tecido Adiposo Branco/enzimologia , Tecido Adiposo Branco/metabolismo , Adiposidade , Animais , Biomarcadores/sangue , Biomarcadores/metabolismo , Dieta Hiperlipídica/efeitos adversos , Intolerância à Glucose/sangue , Intolerância à Glucose/etiologia , Intolerância à Glucose/metabolismo , Fígado/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Proteínas Mitocondriais/genética , Músculo Esquelético/enzimologia , Músculo Esquelético/metabolismo , NAD/biossíntese , Nicotinamida N-Metiltransferase/genética , Obesidade/sangue , Obesidade/etiologia , Especificidade de Órgãos , Análise de Componente Principal , Sirtuínas/genética , Triptofano Oxigenase/genética , Aumento de Peso
15.
Sci Rep ; 6: 19043, 2016 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-26743034

RESUMO

Natural antibacterial clays, when hydrated and applied topically, kill human pathogens including antibiotic resistant strains proliferating worldwide. Only certain clays are bactericidal; those containing soluble reduced metals and expandable clay minerals that absorb cations, providing a capacity for extended metal release and production of toxic hydroxyl radicals. Here we show the critical antibacterial components are soluble Fe(2+) and Al(3+) that synergistically attack multiple cellular systems in pathogens normally growth-limited by Fe supply. This geochemical process is more effective than metal solutions alone and provides an alternative antibacterial strategy to traditional antibiotics. Advanced bioimaging methods and genetic show that Al(3+) misfolds cell membrane proteins, while Fe(2+) evokes membrane oxidation and enters the cytoplasm inflicting hydroxyl radical attack on intracellular proteins and DNA. The lethal reaction precipitates Fe(3+)-oxides as biomolecular damage proceeds. Discovery of this bactericidal mechanism demonstrated by natural clays should guide designs of new mineral-based antibacterial agents.


Assuntos
Silicatos de Alumínio/farmacologia , Alumínio/farmacologia , Antibacterianos/farmacologia , Farmacorresistência Bacteriana/efeitos dos fármacos , Proteínas de Escherichia coli/antagonistas & inibidores , Ferro/farmacologia , Alumínio/química , Silicatos de Alumínio/química , Antibacterianos/química , Cátions Bivalentes , Argila , Farmacorresistência Bacteriana/genética , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Escherichia coli/crescimento & desenvolvimento , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Expressão Gênica , Humanos , Peróxido de Hidrogênio/química , Peróxido de Hidrogênio/metabolismo , Concentração de Íons de Hidrogênio , Radical Hidroxila/química , Radical Hidroxila/metabolismo , Ferro/química , Proteínas de Membrana/antagonistas & inibidores , Proteínas de Membrana/química , Proteínas de Membrana/genética , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Staphylococcus aureus Resistente à Meticilina/genética , Staphylococcus aureus Resistente à Meticilina/crescimento & desenvolvimento , Testes de Sensibilidade Microbiana , Peloterapia/métodos , Oxirredução , Dobramento de Proteína/efeitos dos fármacos , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/crescimento & desenvolvimento , Salmonella typhimurium/efeitos dos fármacos , Salmonella typhimurium/genética , Salmonella typhimurium/crescimento & desenvolvimento , Staphylococcus epidermidis/efeitos dos fármacos , Staphylococcus epidermidis/genética , Staphylococcus epidermidis/crescimento & desenvolvimento
16.
Environ Geochem Health ; 38(2): 363-79, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26055454

RESUMO

Natural antibacterial clays can inhibit growth of human pathogens; therefore, understanding the antibacterial mode of action may lead to new applications for health. The antibacterial modes of action have shown differences based on mineralogical constraints. Here we investigate a natural clay from the Colombian Amazon (AMZ) known to the Uitoto natives as a healing clay. The physical and chemical properties of the AMZ clay were compared to standard reference materials: smectite (SWy-1) and kaolinite (API #5) that represent the major minerals in AMZ. We tested model Gram-negative (Escherichia coli ATCC #25922) and Gram-positive (Bacillus subtilis ATCC #6633) bacteria to assess the clay's antibacterial effectiveness against different bacterial types. The chemical and physical changes in the microbes were examined using bioimaging and mass spectrometry of clay digests and aqueous leachates. Results indicate that a single dose of AMZ clay (250 mg/mL) induced a 4-6 order of magnitude reduction in cell viability, unlike the reference clays that did not impact bacterial survival. AMZ clay possesses a relatively high specific surface area (51.23 m(2)/g) and much higher total surface area (278.82 m(2)/g) than the reference clays. In aqueous suspensions (50 mg clay/mL water), soluble metals are released and the minerals buffer fluid pH between 4.1 and 4.5. We propose that the clay facilitates chemical interactions detrimental to bacteria by absorbing nutrients (e.g., Mg, P) and potentially supplying metals (e.g., Al) toxic to bacteria. This study demonstrates that native traditional knowledge can direct scientific studies.


Assuntos
Silicatos de Alumínio , Antibacterianos , Bacillus subtilis , Argila , Colômbia , Escherichia coli , Testes de Sensibilidade Microbiana , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão
17.
Diabetes ; 64(6): 2015-27, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25626735

RESUMO

Metabolic inflammation in the central nervous system might be causative for the development of overnutrition-induced metabolic syndrome and related disorders, such as obesity, leptin and insulin resistance, and type 2 diabetes. Here we investigated whether nutritive and genetic inhibition of the central IκB kinase ß (IKKß)/nuclear factor-κB (NF-κB) pathway in diet-induced obese (DIO) and leptin-deficient mice improves these metabolic impairments. A known prominent inhibitor of IKKß/NF-κB signaling is the dietary flavonoid butein. We initially determined that oral, intraperitoneal, and intracerebroventricular administration of this flavonoid improved glucose tolerance and hypothalamic insulin signaling. The dose-dependent glucose-lowering capacity was profound regardless of whether obesity was caused by leptin deficiency or high-fat diet (HFD). To confirm the apparent central role of IKKß/NF-κB signaling in the control of glucose and energy homeostasis, we genetically inhibited this pathway in neurons of the arcuate nucleus, one key center for control of energy homeostasis, via specific adeno-associated virus serotype 2-mediated overexpression of IκBα, which inhibits NF-κB nuclear translocation. This treatment attenuated HFD-induced body weight gain, body fat mass accumulation, increased energy expenditure, and reduced arcuate suppressor of cytokine signaling 3 expression, indicative for enhanced leptin signaling. These results reinforce a specific role of central proinflammatory IKKß/NF-κB signaling in the development and potential treatment of DIO-induced comorbidities.


Assuntos
Glicemia/metabolismo , Gorduras na Dieta/efeitos adversos , Quinase I-kappa B/metabolismo , NF-kappa B/metabolismo , Obesidade/metabolismo , Animais , Composição Corporal/fisiologia , Linhagem Celular , Intolerância à Glucose , Imuno-Histoquímica , Hibridização In Situ , Masculino , Camundongos , Obesidade/etiologia , Transdução de Sinais/fisiologia
18.
PLoS One ; 9(8): e106159, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25170916

RESUMO

High-fat (HF) diet-induced obesity and insulin insensitivity are associated with inflammation, particularly in white adipose tissue (WAT). However, insulin insensitivity is apparent within days of HF feeding when gains in adiposity and changes in markers of inflammation are relatively minor. To investigate further the effects of HF diet, C57Bl/6J mice were fed either a low (LF) or HF diet for 3 days to 16 weeks, or fed the HF-diet matched to the caloric intake of the LF diet (PF) for 3 days or 1 week, with the time course of glucose tolerance and inflammatory gene expression measured in liver, muscle and WAT. HF fed mice gained adiposity and liver lipid steadily over 16 weeks, but developed glucose intolerance, assessed by intraperitoneal glucose tolerance tests (IPGTT), in two phases. The first phase, after 3 days, resulted in a 50% increase in area under the curve (AUC) for HF and PF mice, which improved to 30% after 1 week and remained stable until 12 weeks. Between 12 and 16 weeks the difference in AUC increased to 60%, when gene markers of inflammation appeared in WAT and muscle but not in liver. Plasma proteomics were used to reveal an acute phase response at day 3. Data from PF mice reveals that glucose intolerance and the acute phase response are the result of the HF composition of the diet and increased caloric intake respectively. Thus, the initial increase in glucose intolerance due to a HF diet occurs concurrently with an acute phase response but these effects are caused by different properties of the diet. The second increase in glucose intolerance occurs between 12-16 weeks of HF diet and is correlated with WAT and muscle inflammation. Between these times glucose tolerance remains stable and markers of inflammation are undetectable.


Assuntos
Gorduras na Dieta/efeitos adversos , Ingestão de Energia , Regulação da Expressão Gênica/efeitos dos fármacos , Intolerância à Glucose/metabolismo , Obesidade/metabolismo , Animais , Gorduras na Dieta/farmacologia , Intolerância à Glucose/induzido quimicamente , Intolerância à Glucose/patologia , Inflamação/induzido quimicamente , Inflamação/metabolismo , Inflamação/patologia , Camundongos , Obesidade/induzido quimicamente , Obesidade/patologia , Especificidade de Órgãos/efeitos dos fármacos
19.
Proc Natl Acad Sci U S A ; 111(32): 11642-5, 2014 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-25071186

RESUMO

Reactions among minerals and organic compounds in hydrothermal systems are critical components of the Earth's deep carbon cycle, provide energy for the deep biosphere, and may have implications for the origins of life. However, there is limited information as to how specific minerals influence the reactivity of organic compounds. Here we demonstrate mineral catalysis of the most fundamental component of an organic reaction: the breaking and making of a covalent bond. In the absence of mineral, hydrothermal reaction of cis- and trans-1,2-dimethylcyclohexane is extremely slow and generates many products. In the presence of sphalerite (ZnS), however, the reaction rate increases dramatically and one major product is formed: the corresponding stereoisomer. Isotope studies show that the sphalerite acts as a highly specific heterogeneous catalyst for activation of a single carbon-hydrogen bond in the dimethylcyclohexanes.


Assuntos
Compostos Orgânicos/química , Sulfetos/química , Compostos de Zinco/química , Catálise , Cicloexanos/química , Fenômenos Geológicos , Ligação de Hidrogênio , Minerais/química , Modelos Químicos , Fenômenos de Química Orgânica , Origem da Vida , Estereoisomerismo
20.
J Org Chem ; 79(17): 7861-71, 2014 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-25025270

RESUMO

Hydrothermal organic transformations under geochemically relevant conditions can result in complex product mixtures that form via multiple reaction pathways. The hydrothermal decomposition reactions of the model ketone dibenzyl ketone form a mixture of reduction, dehydration, fragmentation, and coupling products that suggest simultaneous and competitive radical and ionic reaction pathways. Here we show how Norrish Type I photocleavage of dibenzyl ketone can be used to independently generate the benzyl radicals previously proposed as the primary intermediates for the pure hydrothermal reaction. Under hydrothermal conditions, the benzyl radicals undergo hydrogen atom abstraction from dibenzyl ketone and para-coupling reactions that are not observed under ambient conditions. The photochemical method allows the primary radical coupling products to be identified, and because these products are generated rapidly, the method also allows the kinetics of the subsequent dehydration and Paal-Knorr cyclization reactions to be measured. In this way, the radical and ionic thermal and hydrothermal reaction pathways can be studied separately.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...