Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Methods Mol Biol ; 1054: 253-65, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23913298

RESUMO

DNA-binding proteins play essential roles in many cellular processes. Understanding on a molecular level how these proteins interact with their cognate sequences can provide important functional insights. Here, we describe a band shift assay in agarose gel to assess the mode of protein binding to a DNA molecule containing multiple protein-binding sites. The basis for the assay is that protein-DNA complexes display retarded gel electrophoresis mobility, due to their increased molecular weight relative to free DNA. The degree of retardation is higher with increasing numbers of bound protein molecules, thereby allowing resolution of complexes with differing protein-DNA stoichiometries. The DNA is radiolabeled to allow for visualization of both unbound DNA and all the different DNA-protein complexes. We present a quantitative analysis to determine whether protein binding to multiple sites within the same DNA molecule is independent or cooperative.


Assuntos
Proteínas de Ligação a DNA/isolamento & purificação , DNA/química , Eletroforese em Gel de Ágar/métodos , Sequência de Bases , Sítios de Ligação , Proteínas de Ligação a DNA/química
2.
J Biol Chem ; 285(46): 35814-24, 2010 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-20826803

RESUMO

At the core of Saccharomyces cerevisiae telomeres is an array of tandem telomeric DNA repeats bound site-specifically by multiple Rap1 molecules. There, Rap1 orchestrates the binding of additional telomere-associated proteins and negatively regulates both telomere fusion and length homeostasis. Using electron microscopy, viscosity, and light scattering measurements, we show that purified Rap1 is a monomer in solution that adopts a ringlike or C shape with a central cavity. Rap1 could orchestrate telomere function by binding multiple telomere array sites through either cooperative or independent mechanisms. To determine the mechanism, we analyze the distribution of Rap1 monomers on defined telomeric DNA arrays. This analysis clearly indicates that Rap1 binds independently to each nonoverlapping site in an array, regardless of the spacing between sites, the total number of sites, the affinity of the sites for Rap1, and over a large concentration range. Previous experiments have not clearly separated the effects of affinity from repeat spacing on telomere function. We clarify these results by testing in vivo the function of defined telomere arrays containing the same Rap1 binding site separated by spacings that were previously defined as low or high activity. We find that Rap1 binding affinity in vitro correlates with the ability of telomeric repeat arrays to regulate telomere length in vivo. We suggest that Rap1 binding to multiple sites in a telomere array does not, by itself, promote formation of a more energetically stabile complex.


Assuntos
Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Ligação a Telômeros/metabolismo , Telômero/metabolismo , Fatores de Transcrição/metabolismo , Algoritmos , Sequência de Bases , Sítios de Ligação/genética , Cromossomos Fúngicos/genética , Cromossomos Fúngicos/metabolismo , DNA Fúngico/genética , DNA Fúngico/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/ultraestrutura , Microscopia Eletrônica de Transmissão , Nucleoproteínas/genética , Nucleoproteínas/metabolismo , Nucleoproteínas/ultraestrutura , Ligação Proteica , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/ultraestrutura , Homologia de Sequência do Ácido Nucleico , Complexo Shelterina , Telômero/genética , Proteínas de Ligação a Telômeros/genética , Proteínas de Ligação a Telômeros/ultraestrutura , Fatores de Transcrição/genética , Fatores de Transcrição/ultraestrutura
3.
Genetics ; 178(1): 245-57, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18202371

RESUMO

Telomeres are an unusual component of the genome because they do not encode genes, but their structure and cellular maintenance machinery (which we define as "telotype") are essential for chromosome stability. Cells can switch between different phenotypic states. One such example is when they switch from maintenance mediated by telomerase (TERT telotype) to one of the two alternative mechanisms of telomere preservation (ALT I and ALT II telotype). The nature of this switch is largely unknown. Reintroduction of telomerase into ALT II, but not ALT I, yeast led to the loss of their ability to survive a second round of telomerase withdrawal. Mating-based genetic analysis of ALT I and II revealed that both types of telomerase-independent telomere maintenance are inherited as a non-Mendelian trait dominant over senescence (SEN telotype). Additionally, inheritance of ALT I and ALT II did not depend on either the mitochondrial genome or a prion-based mechanism. Type I, but not type II, survivor cells exhibited impaired gene silencing, potentially connecting the switch to the ALT telotype epigenetic changes. These data provide evidence that nonprion epigenetic-like mechanisms confer flexibility on cells as a population to adjust to the life-threatening situation of telomerase loss, allowing cells to switch from TERT to ALT telotypes that can sustain viable populations.


Assuntos
Genes Dominantes , Padrões de Herança/genética , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/enzimologia , Telomerase/deficiência , Telômero/metabolismo , Cruzamentos Genéticos , DNA Mitocondrial/genética , Epigênese Genética , Inativação Gênica , Genes Fúngicos Tipo Acasalamento , Viabilidade Microbiana , Modelos Genéticos , Mutação/genética , Príons/metabolismo , Saccharomyces cerevisiae/genética , Fatores de Tempo
4.
J Biol Chem ; 279(7): 5135-45, 2004 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-14585843

RESUMO

Transposition of mobile genetic elements proceeds through a series of DNA phosphoryl transfer reactions, with multiple reaction steps catalyzed by the same set of active site residues. Mu transposase repeatedly utilizes the same active site DDE residues to cleave and join a single DNA strand at each transposon end to a new, distant DNA location (the target DNA). To better understand how DNA is manipulated within the Mu transposase-DNA complex during recombination, the impact of the DNA immediately adjacent to the Mu DNA ends (the flanking DNA) on the progress of transposition was investigated. We show that, in the absence of the MuB activator, the 3 '-flanking strand can slow one or more steps between DNA cleavage and joining. The presence of this flanking DNA strand in just one active site slows the joining step in both active sites. Further evidence suggests that this slow step is not due to a change in the affinity of the transpososome for the target DNA. Finally, we demonstrate that MuB activates transposition by stimulating the reaction step between cleavage and joining that is otherwise slowed by this flanking DNA strand. Based on these results, we propose that the 3 '-flanking DNA strand must be removed from, or shifted within, both active sites after the cleavage step; this movement is coupled to a conformational change within the transpososome that properly positions the target DNA simultaneously within both active sites and thereby permits joining.


Assuntos
Bacteriófago mu/metabolismo , Elementos de DNA Transponíveis/genética , DNA/química , Bacteriófago phi X 174/química , Sequência de Bases , Sítios de Ligação , Catálise , Desoxirribonuclease I/química , Eletroforese em Gel de Poliacrilamida , Modelos Biológicos , Dados de Sequência Molecular , Oligonucleotídeos/química , Fosforilação , Conformação Proteica , Recombinação Genética , Fatores de Tempo
5.
J Biol Chem ; 277(10): 7694-702, 2002 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-11756423

RESUMO

Mu transposition occurs within a large protein-DNA complex called a transpososome. This stable complex includes four subunits of MuA transposase, each contacting a 22-base pair recognition site located near an end of the transposon DNA. These MuA recognition sites are critical for assembling the transpososome. Here we report that when concentrations of Mu DNA are limited, the MuA recognition sites permit assembly of transpososomes in which non-Mu DNA substitutes for some of the Mu sequences. These "hybrid" transpososomes are stable to competitor DNA, actively transpose the non-Mu DNA, and produce transposition products that had been previously observed but not explained. The strongest activator of non-Mu transposition is a DNA fragment containing two MuA recognition sites and no cleavage site, but a shorter fragment with just one recognition site is sufficient. Based on our results, we propose that MuA recognition sites drive assembly of functional transpososomes in two complementary ways. Multiple recognition sites help physically position MuA subunits in the transpososome plus each individual site allosterically activates transposase.


Assuntos
Elementos de DNA Transponíveis , DNA/metabolismo , Transposases/metabolismo , Sítio Alostérico , Bacteriófago phi X 174/metabolismo , Sequência de Bases , Sítios de Ligação , Ligação Competitiva , Relação Dose-Resposta a Droga , Eletroforese em Gel de Ágar , Eletroforese em Gel Bidimensional , Ativação Enzimática , Modelos Biológicos , Dados de Sequência Molecular , Plasmídeos/metabolismo , Ligação Proteica , Conformação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...