Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Insects ; 15(4)2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38667419

RESUMO

The polyphagous fall armyworm (FAW), Spodoptera frugiperda, has become an invasive pest worldwide in recent years. To develop maize germplasm with multiple pest resistance and understand genetic inheritance, 12 experimental hybrids (six pairs of reciprocal crosses) with diverse genetic backgrounds and four commercial checks were examined for FAW resistance in 2013 and 2014. The experiment utilized a randomized complete block design with four replications as the block factor. FAW injury on maize plants was assessed at 7 and 14 d after the artificial infestation at the V6 stage, and predatory arthropod taxa and abundance on maize seedlings were recorded 7 d after the infestation. Spodoptera frugiperda resistance varied significantly among the 16 hybrids. Two reciprocal crosses ('FAW1430' × 'Oh43' and 'CML333' × 'NC358') showed the least FAW injury. Eleven arthropod predators [i.e., six coleopterans, three hemipterans, earwigs (dermapterans), and spiders (or arachnids)] were also recorded; the two most common predators were the pink spotted ladybeetle, Coleomegilla maculata, and the insidious flower (or minute pirate) bug, Orius spp. Predator abundance was not correlated to FAW injury but varied greatly between 2013 and 2014. Principal component analysis demonstrated that, when compared with FAW resistant (or Bt-transgenic) checks ('DKC69-71', 'DKC67-88', and 'P31P42'), five pairs of the reciprocal crosses had moderate FAW resistance, whereas a pair of reciprocal crosses ('NC350' × 'NC358' and NC358 × NC350) showed the same FAW susceptibility as the non-Bt susceptible check 'DKC69-72'. Both parents contributed similarly to FAW resistance, or no maternal/cytoplasmic effect was detected in the experimental hybrids.

2.
Plant Genome ; 16(2): e20311, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36866429

RESUMO

Maize (Zea mays L.) is a crop of major economic and food security importance globally. The fall armyworm (FAW), Spodoptera frugiperda, can devastate entire maize crops, especially in countries or markets that do not allow the use of transgenic crops. Host-plant insect resistance is an economical and environmentally benign way to control FAW, and this study sought to identify maize lines, genes, and pathways that contribute to resistance to FAW. Of the 289 maize lines phenotyped for FAW damage in artificially infested, replicated field trials over 3 years, 31 were identified with good levels of resistance that could donate FAW resistance into elite but susceptible hybrid parents. The 289 lines were genotyped by sequencing to provide single nucleotide polymorphism (SNP) markers for a genome-wide association study (GWAS), followed by a metabolic pathway analysis using the Pathway Association Study Tool (PAST). GWAS identified 15 SNPs linked to 7 genes, and PAST identified multiple pathways, associated with FAW damage. Top pathways, and thus useful resistance mechanisms for further study, include hormone signaling pathways and the biosynthesis of carotenoids (particularly zeaxanthin), chlorophyll compounds, cuticular wax, known antibiosis agents, and 1,4-dihydroxy-2-naphthoate. Targeted metabolite analysis confirmed that maize genotypes with lower levels of FAW damage tend to have higher levels of chlorophyll a than genotypes with high FAW damage, which tend to have lower levels of pheophytin, lutein, chlorophyll b and ß-carotene. The list of resistant genotypes, and the results from the genetic, pathway, and metabolic study, can all contribute to efficient creation of FAW resistant cultivars.


Assuntos
Estudo de Associação Genômica Ampla , Zea mays , Animais , Zea mays/genética , Spodoptera/genética , Clorofila A , Larva
3.
MethodsX ; 9: 101930, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36451780

RESUMO

Two-dimensional polyacrylamide gel electrophoresis (2D-PAGE) is widely used in proteomics studies. Hundreds of proteins extracted from a biological sample can be separated and visualized on a 2D-PAGE gel. The interpretation of protein expression levels relies on the comparison of areas and intensities of the corresponding protein spots in 2D-PAGE gel images. However, determination of protein spot areas by the manual selection method is time-consuming and error-prone. The purpose of this research is to develop a highly automated program for the simultaneous detection and quantification of protein spots across a large number of 2D-PAGE protein gel images by using MATLAB image processing toolbox. This program will enhance the potential of using 2D-PAGE technique as a high throughput quantitative protein expression study tool. We developed MatGel, a simple and efficient program for protein spot area detection and intensity quantification from 2D-PAGE protein gel images. MatGel can detect and output the areas and mean intensities of corresponding protein spots across a large number of 2D-PAGE gel images simultaneously. Users also have options to adjust preferences at each step of image analysis. Basic knowledge with MATLAB programming language is required to run the program.•We developed MATLAB program MatGel to automate the determination of protein spots on 2D-PAGE protein gel images.•MatGel can analyze a large number of 2D-PAGE gel images simultaneously to minimize human errors.•MatGel is flexible and easy to use.

4.
BMC Plant Biol ; 21(1): 138, 2021 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-33726668

RESUMO

BACKGROUND: Maize (Zea mays L.) is a major cereal crop, with the United States accounting for over 40% of the worldwide production. Corn leaf aphid [CLA; Rhopalosiphum maidis (Fitch)] is an economically important pest of maize and several other monocot crops. In addition to feeding damage, CLA acts as a vector for viruses that cause devastating diseases in maize. We have shown previously that the maize inbred line Mp708, which was developed by classical plant breeding, provides heightened resistance to CLA. However, the transcriptomic variation conferring CLA resistance to Mp708 has not been investigated. RESULTS: In this study, we contrasted the defense responses of the resistant Mp708 genotype to those of the susceptible Tx601 genotype at the transcriptomic (mRNA-seq) and volatile blend levels. Our results suggest that there was a greater transcriptomic remodeling in Mp708 plants in response to CLA infestation compared to the Tx601 plants. These transcriptomic signatures indicated an activation of hormonal pathways, and regulation of sesquiterpenes and terpenoid synthases in a constitutive and inducible manner. Transcriptomic analysis also revealed that the resistant Mp708 genotype possessed distinct regulation of ethylene and jasmonic acid pathways before and after aphid infestation. Finally, our results also highlight the significance of constitutive production of volatile organic compounds (VOCs) in Mp708 and Tx601 plants that may contribute to maize direct and/or indirect defense responses. CONCLUSIONS: This study provided further insights to understand the role of defense signaling networks in Mp708's resistance to CLA.


Assuntos
Afídeos , Produtos Agrícolas/genética , Produtos Agrícolas/parasitologia , Perfilação da Expressão Gênica , Herbivoria , Zea mays/genética , Zea mays/parasitologia , Animais , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Variação Genética , Estados Unidos
5.
Food Control ; 118: 107363, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33273755

RESUMO

The widespread contamination of foods by mycotoxins continues to be a public health hazard in sub-Saharan Africa, with maize and groundnut being major sources of contamination. This study was undertaken to assess the hypothesis that grain sorting can be used to reduce mycotoxin contamination in grain lots by removing toxic kernels. We tested a set of sorting principles and methods for reducing mycotoxin levels in maize and groundnut from a variety of genotypes and environments. We found that kernel bulk density (KBD) and 100-kernel weight (HKW) were associated with the levels of aflatoxins (AF) and fumonisins (FUM) in maize grain. A low-cost sorter prototype (the 'DropSort' device) that separated maize grain based on KBD and HKW was more effective in reducing FUM than AF. We then evaluated the effectiveness of DropSorting when combined with either size or visual sorting. Size sorting followed by DropSorting was the fastest method for reducing FUM to under 2 ppm, but was not effective in reducing AF levels in maize grain to under 20 ppb, especially for heavily AF-contaminated grain. Analysis of individual kernels showed that high -AF maize kernels had lower weight, volume, density, length, and width and higher sphericity than those with low AF. Single kernel weight was the most significant predictor of AF concentration. The DropSort excluded kernels with lower single kernel weight, volume, width, depth, and sphericity. We also found that visual sorting and bright greenish-yellow fluorescence sorting of maize single kernels were successful in separating kernels based on AF levels. For groundnut, the DropSort grouped grain based on HKW and did not significantly reduce AF concentrations, whereas size sorting and visual sorting were much more effective.

6.
Front Plant Sci ; 11: 565323, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33101334

RESUMO

Preharvest mycotoxin contamination of field-grown crops is influenced not only by the host genotype, but also by inoculum load, insect pressure and their confounding interactions with seasonal weather. In two different field trials, we observed a preference in the natural infestation of corn earworm (CEW; Helicoverpa zea Boddie) to specific maize (Zea mays L.) genotypes and investigated this observation. The field trials involved four maize lines with contrasting levels of resistance to Aspergillus flavus. The resistant lines had 7 to 14-fold greater infested ears than the susceptible lines. Seed aflatoxin B1 (AF) levels, in mock- and A. flavus-inoculated ears were consistent with genotype resistance to A. flavus, in that the resistant lines showed low levels of AF (<30 ppb), whereas the susceptible lines had up to 500 ppb. On the other hand, CEW infestation showed a positive correlation with seed fumonisins (FUM) contamination by native Fusarium verticillioides strains. We inferred that the inverse trend in the correlation of AF and FUM with H. zea infestation may be due to a differential sensitivity of CEW to the two mycotoxins. This hypothesis was tested by toxin-feeding studies. H. zea larvae showed decreasing mass with increasing AF in the diet and incurred >30% lethality at 250 ppb. In contrast, CEW was tolerant to fumonisin with no significant loss in larval mass even at 100 ppm, implicating the low seed aflatoxin content as a predominant factor for the prevalence of CEW infestation and the associated fumonisin contamination in A. flavus resistant maize lines. Further, delayed flowering of the two resistant maize lines might have contributed to the pervasive H. zea damage of these lines by providing young silk for egg-laying. These results highlight the need for integrated strategies targeting mycotoxigenic fungi as well as their insect vectors for enhanced food safety.

7.
Front Microbiol ; 11: 45, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32117099

RESUMO

Aflatoxins are carcinogenic and toxic compounds produced principally by fungal species Aspergillus flavus (Link: Fries) and A. parasiticus (Speare), which are common contaminants of food and feed. Aflatoxins can be found at dangerously high levels and can readily contaminate pre-harvest maize (Zea mays L.) grain. Sources of resistance to aflatoxin accumulation in maize have been identified, however, the highly quantitative nature and complex inheritance of this trait have limited the introgression of aflatoxin accumulation resistance into agronomically desirable lines. Mapping of quantitative trait loci (QTL) was performed on a bi-parental population comprised of 241 F2:3 families derived from the cross of inbred lines Mp705 (susceptible) × Mp719 (resistant). The mapping population was phenotyped in replicated field trials in three environments for resistance to aflatoxin accumulation under artificial inoculation with an A. flavus spore suspension. The genetic linkage map was constructed with 1,276 single nucleotide polymorphism (SNP) and simple sequence repeat (SSR) molecular markers covering a total genetic distance of 1,642 cM across all ten maize chromosomes. Multiple interval mapping revealed that majority of the aflatoxin-reducing alleles and the source for the larger effect QTL identified in this study were contributed from Mp719, the resistant parent. Two QTL identified on chromosome 1 (bin 1.06-1.07) and chromosome 3 (bin 3.09) were the most stable across different environments and when combined, explained 24.6% of the total phenotypic variance across all three environments. Results from the study showed that these chromosomal regions harbor important QTL for influencing aflatoxin accumulation, which is consistent with previous reports with other different mapping populations. These stable QTL were the most promising for controlling aflatoxin accumulation in maize grain. Identifying beneficial alleles derived from Mp719 and closely linked molecular markers through QTL analysis for implementation of MAS could accelerate breeding efforts to reduce aflatoxin accumulation in maize.

8.
Front Microbiol ; 10: 2683, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31849861

RESUMO

The roles of signaling pathway genes related to the aflatoxin reduction trait in maize were studied for the improvement of maize resistance to the fungal pathogen Aspergillus flavus (A. flavus). In this study, 55 maize genes in plant-pathogen interaction signaling pathways were investigated among 12 maize near-isogenic lines (NILs) that carry maize quantitative trait loci (QTL) associated with aflatoxin reduction. These maize NILs were developed from maize inbred lines Mp313E (resistant donor parent) and Va35 (susceptible recurrent parent). The quantitative RT-PCR (qRT-PCR) technique was used to study the gene expression patterns. Seven calcium-dependent protein kinases and one respiratory burst oxidase displayed significant differential expression levels among the maize QTL-NILs. In addition, the gene expression profiles of WRKY transcription factors were also examined. Maize WRKY 52, WRKY 71, and WRKY83 genes displayed significantly differential expression levels among the QTL-NILs. The elucidation of differentially expressed signaling pathway genes involving maize resistance to A. flavus can provide insights into maize disease resistance and enhance maize molecular breeding.

9.
Plant Physiol ; 179(4): 1402-1415, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30643012

RESUMO

The corn leaf aphid (CLA; Rhopalosiphum maidis) is a phloem sap-sucking insect that attacks many cereal crops, including maize (Zea mays). We previously showed that the maize inbred line Mp708, which was developed by classical plant breeding, provides enhanced resistance to CLA. Here, using electrophysiological monitoring of aphid feeding behavior, we demonstrate that Mp708 provides phloem-mediated resistance to CLA. Furthermore, feeding by CLA on Mp708 plants enhanced callose deposition, a potential defense mechanism utilized by plants to limit aphid feeding and subsequent colonization. In maize, benzoxazinoids (BX) or BX-derived metabolites contribute to enhanced callose deposition by providing heightened resistance to CLA. However, BX and BX-derived metabolites were not significantly altered in CLA-infested Mp708 plants, indicating BX-independent defense against CLA. Evidence presented here suggests that the constitutively higher levels of 12-oxo-phytodienoic acid (OPDA) in Mp708 plants contributed to enhanced callose accumulation and heightened CLA resistance. OPDA enhanced the expression of ethylene biosynthesis and receptor genes, and the synergistic interactions of OPDA and CLA feeding significantly induced the expression of the transcripts encoding Maize insect resistance1-Cysteine Protease, a key defensive protein against insect pests, in Mp708 plants. Furthermore, exogenous application of OPDA on maize jasmonic acid-deficient plants caused enhanced callose accumulation and heightened resistance to CLA, suggesting that the OPDA-mediated resistance to CLA is independent of the jasmonic acid pathway. We further demonstrate that the signaling function of OPDA, rather than a direct toxic effect, contributes to enhanced CLA resistance in Mp708.


Assuntos
Afídeos/fisiologia , Ácidos Graxos Insaturados/fisiologia , Glucanos/metabolismo , Zea mays/fisiologia , Acetatos , Animais , Benzoxazinas/metabolismo , Ciclopentanos , Etilenos/biossíntese , Fertilidade , Herbivoria , Oxilipinas , Floema/fisiologia
10.
Plant Genome ; 11(1)2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29505629

RESUMO

Maize ( L.) is a staple crop of economic, industrial, and food security importance. Damage to the growing ears by corn earworm [ (Boddie)] is a major economic burden and increases secondary fungal infections and mycotoxin levels. To identify biochemical pathways associated with native resistance mechanisms, a genome-wide association analysis was performed, followed by pathway analysis using a gene-set enrichment-based approach. The gene-set enrichment exposed the cumulative effects of genes in pathways to identify those that contributed the most to resistance. Single nucleotide polymorphism-trait associations were linked to genes including transcription factors, protein kinases, hormone-responsive proteins, hydrolases, pectinases, xylogluconases, and the flavonol synthase gene (in the maysin biosynthesis pathway). The most significantly associated metabolic pathways identified included those that modified cell wall components, especially homogalacturonan, wax esters, and fatty acids; those involved in antibiosis, especially 2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one (DIMBOA), flavonoids, and phenolics; and those involved in plant growth, including N uptake and energy production. The pathways identified in this study, and especially the cell wall-associated pathways, identified here for the first time, provide clues to resistance mechanisms that could guide the identification of new resistant ideotypes and candidate genes for creation of resistant maize germplasm via selection of natural variants or gene editing.


Assuntos
Redes e Vias Metabólicas/genética , Mariposas , Zea mays/genética , Zea mays/metabolismo , Agricultura/estatística & dados numéricos , Animais , Benzoxazinas/metabolismo , Flavonoides/genética , Flavonoides/metabolismo , Estudo de Associação Genômica Ampla , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Polimorfismo de Nucleotídeo Único , Texas
11.
Toxins (Basel) ; 10(2)2018 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-29385107

RESUMO

Many projects have identified candidate genes for resistance to aflatoxin accumulation or Aspergillus flavus infection and growth in maize using genetic mapping, genomics, transcriptomics and/or proteomics studies. However, only a small percentage of these candidates have been validated in field conditions, and their relative contribution to resistance, if any, is unknown. This study presents a consolidated list of candidate genes identified in past studies or in-house studies, with descriptive data including genetic location, gene annotation, known protein identifiers, and associated pathway information, if known. A candidate gene pipeline to test the phenotypic effect of any maize DNA sequence on aflatoxin accumulation resistance was used in this study to determine any measurable effect on polymorphisms within or linked to the candidate gene sequences, and the results are published here.


Assuntos
Aflatoxinas , Aspergillus flavus , Resistência à Doença/genética , Genes de Plantas , Zea mays/genética , Interações Hospedeiro-Patógeno/genética , Doenças das Plantas/genética , Zea mays/microbiologia
12.
Planta ; 247(4): 863-873, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29260396

RESUMO

MAIN CONCLUSION: Chemical isolation and NMR-based structure elucidation revealed a novel keto-acidic sesquiterpenoid, termed zealexin A4 (ZA4). ZA4 is elicited by pathogens and herbivory, but attenuated by heightened levels of CO 2 . The identification of the labdane-related diterpenoids, termed kauralexins and acidic sesquiterpenoids, termed zealexins, demonstrated the existence of at least ten novel stress-inducible maize metabolites with diverse antimicrobial activity. Despite these advances, the identity of co-occurring and predictably related analytes remains largely unexplored. In the current effort, we identify and characterize the first sesquiterpene keto acid derivative of ß-macrocarpene, named zealexin A4 (ZA4). Evaluation of diverse maize inbreds revealed that ZA4 is commonly produced in maize scutella during the first 14 days of seedling development; however, ZA4 production in the scutella was markedly reduced in seedlings grown in sterile soil. Elevated ZA4 production was observed in response to inoculation with adventitious fungal pathogens, such as Aspergillus flavus and Rhizopus microsporus, and a positive relationship between ZA4 production and expression of the predicted zealexin biosynthetic genes, terpene synthases 6 and 11 (Tps6 and Tps11), was observed. ZA4 exhibited significant antimicrobial activity against the mycotoxigenic pathogen A. flavus; however, ZA4 activity against R. microsporus was minimal, suggesting the potential of some fungi to detoxify ZA4. Significant induction of ZA4 production was also observed in response to infestation with the stem tunneling herbivore Ostrinia nubilalis. Examination of the interactive effects of elevated CO2 (E-CO2) on both fungal and herbivore-elicited ZA4 production revealed significantly reduced levels of inducible ZA4 accumulation, consistent with a negative role for E-CO2 on ZA4 production. Collectively, these results describe a novel ß-macrocarpene-derived antifungal defense in maize and expand the established diversity of zealexins that are differentially regulated in response to biotic/abiotic stress.


Assuntos
Sesquiterpenos/metabolismo , Zea mays/metabolismo , Alquil e Aril Transferases/metabolismo , Anti-Infecciosos/metabolismo , Aspergillus flavus/metabolismo , Dióxido de Carbono/farmacologia , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Imunidade Vegetal , Rhizopus/metabolismo , Plântula/metabolismo , Zea mays/efeitos dos fármacos , Zea mays/microbiologia
13.
PLoS One ; 12(7): e0181265, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28715485

RESUMO

Maize (Zea mays L.) is a globally important staple food crop prone to contamination by aflatoxin, a carcinogenic secondary metabolite produced by the fungus Aspergillus flavus. An efficient approach to reduce accumulation of aflatoxin is the development of germplasm resistant to colonization and toxin production by A. flavus. Lipoxygenases (LOXs) are a group of non-heme iron containing dioxygenase enzymes that catalyze oxygenation of polyunsaturated fatty acids (PUFAs). LOX derived oxylipins play critical roles in plant defense against pathogens including A. flavus. The objectives of this study were to summarize sequence diversity and expression patterns for all LOX genes in the maize genome, and map their effect on aflatoxin accumulation via linkage and association mapping. In total, 13 LOX genes were identified, characterized, and mapped. The sequence of one gene, ZmLOX10, is reported from 5 inbred lines. Genes ZmLOX1/2, 5, 8, 9, 10 and 12 (GRMZM2G156861, or V4 numbers ZM00001D042541 and Zm00001D042540, GRMZM2G102760, GRMZM2G104843, GRMZM2G017616, GRMZM2G015419, and GRMZM2G106748, respectively) fell under previously published QTL in one or more mapping populations and are linked to a measurable reduction of aflatoxin in maize grains. Association mapping results found 28 of the 726 SNPs tested were associated with reduced aflatoxin levels at p ≤ 9.71 x 10-4 according to association statistics. These fell within or near nine of the ZmLOX genes. This work confirms the importance of some lipoxygenases for resistance to aflatoxin accumulation and may be used to direct future genetic selection in maize.


Assuntos
Aflatoxinas/metabolismo , Lipoxigenase/genética , Proteínas de Plantas/genética , Zea mays/genética , Aspergilose/genética , Aspergilose/metabolismo , Aspergillus flavus , Mapeamento Cromossômico , Expressão Gênica , Estudos de Associação Genética , Ligação Genética , Predisposição Genética para Doença , Lipoxigenase/metabolismo , Filogenia , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Proteínas de Plantas/metabolismo , Polimorfismo de Nucleotídeo Único , Zea mays/metabolismo
14.
Plant Signal Behav ; 11(8): e1212800, 2016 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-27467304

RESUMO

The vasculature of plants act as a channel for transport of signal(s) that facilitate long-distance intraplant communication. In maize, Maize insect resistance1-Cysteine Protease (Mir1-CP), which has homology to papain-like proteases, provides defense to different feeding guilds of insect pests. Furthermore, accumulation of Mir1-CP in the vasculature suggests that Mir1-CP can potentially function as a phloem-mobile protein. In a recent study, we provided evidence that Mir1-CP can curtail the growth of phloem-sap sucking insect, corn leaf aphid (CLA; Rhopalosiphum maidis). Our current study further examined whether aboveground feeding by CLA can induce resistance to subsequent herbivory by belowground feeding western corn rootworm (WCR; Diabrotica virgifera virgifera). Aboveground feeding by CLA systemically induced the accumulation of Mir1-CP in the roots. Furthermore, foliage feeding by CLA provided enhanced resistance to subsequent herbivory by belowground feeding of WCR. Taken together, our previous findings and results presented here indicate that long-distance transport of Mir1-CP is critical for providing enhanced resistance to insect attack in maize.


Assuntos
Insetos/patogenicidade , Proteínas de Plantas/metabolismo , Zea mays/metabolismo , Zea mays/parasitologia , Animais , Afídeos/patogenicidade , Regulação da Expressão Gênica de Plantas , Folhas de Planta/metabolismo , Folhas de Planta/parasitologia , Proteínas de Plantas/genética
15.
Toxins (Basel) ; 8(1)2016 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-26742074

RESUMO

Aflatoxins, which are produced by Aspergillus flavus, are toxic to humans, livestock, and pets. The value of maize (Zea mays) grain is markedly reduced when contaminated with aflatoxin. Plant resistance and biological control using non-toxin producing strains are considered effective strategies for reducing aflatoxin accumulation in maize grain. Distinguishing between the toxin and non-toxin producing strains is important in determining the effectiveness of bio-control strategies and understanding inter-strain interactions. Using polymorphisms found in the fungal rRNA intergenic spacer region (IGS) between a toxigenic strain of A. flavus (NRRL 3357) and the non-toxigenic strain used in the biological control agent Afla-Guard(®) (NRRL 21882), we developed a set of primers that allows for the identification and quantification of the two strains using quantitative PCR. This primer set has been used to screen maize grain that was inoculated with the two strains individually and co-inoculated with both strains, and it has been shown to be effective in both the identification and quantification of both strains. Screening of co-inoculated ears from multiple resistant and susceptible genotypic crosses revealed no significant differences in fungal biomass accumulation of either strain in the field tests from 2010 and 2011 when compared across the means of all genotypes. Only one genotype/year combination showed significant differences in strain accumulation. Aflatoxin accumulation analysis showed that, as expected, genotypes inoculated with the toxigenic strain accumulated more aflatoxin than when co-inoculated with both strains or inoculated with only the non-toxigenic strain. Furthermore, accumulation of toxigenic fungal mass was significantly correlated with aflatoxin accumulation while non-toxigenic fungal accumulation was not. This primer set will allow researchers to better determine how the two fungal strains compete on the maize ear and investigate the interaction between different maize lines and these A. flavus strains.


Assuntos
Aspergillus flavus/genética , Zea mays , DNA Fúngico/genética , Contaminação de Alimentos , Polimorfismo Genético , Reação em Cadeia da Polimerase em Tempo Real
16.
BMC Genomics ; 16: 673, 2015 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-26334534

RESUMO

BACKGROUND: Aflatoxin is a potent carcinogen that can contaminate grain infected with the fungus Aspergillus flavus. However, resistance to aflatoxin accumulation in maize is a complex trait with low heritability. Here, two complementary analyses were performed to better understand the mechanisms involved. The first coupled results of a genome-wide association study (GWAS) that accounted for linkage disequilibrium among single nucleotide polymorphisms (SNPs) with gene-set enrichment for a pathway-based approach. The rationale was that the cumulative effects of genes in a pathway would give insight into genetic differences that distinguish resistant from susceptible lines of maize. The second involved finding non-pathway genes close to the most significant SNP-trait associations with the greatest effect on reducing aflatoxin in multiple environments. Unlike conventional GWAS, the latter analysis emphasized multiple aspects of SNP-trait associations rather than just significance and was performed because of the high genotype x environment variability exhibited by this trait. RESULTS: The most significant metabolic pathway identified was jasmonic acid (JA) biosynthesis. Specifically, there was at least one allelic variant for each step in the JA biosynthesis pathway that conferred an incremental decrease to the level of aflatoxin observed among the inbred lines in the GWAS panel. Several non-pathway genes were also consistently associated with lowered aflatoxin levels. Those with predicted functions related to defense were: leucine-rich repeat protein kinase, expansin B3, reversion-to-ethylene sensitivity1, adaptor protein complex2, and a multidrug and toxic compound extrusion protein. CONCLUSIONS: Our genetic analysis provided strong evidence for several genes that were associated with aflatoxin resistance. Inbred lines that exhibited lower levels of aflatoxin accumulation tended to share similar haplotypes for genes specifically in the pathway of JA biosynthesis, along with several non-pathway genes with putative defense-related functions. Knowledge gained from these two complementary analyses has improved our understanding of population differences in aflatoxin resistance.


Assuntos
Aflatoxinas/metabolismo , Estudo de Associação Genômica Ampla , Redes e Vias Metabólicas/genética , Zea mays/genética , Algoritmos , Cromossomos de Plantas/genética , Árvores de Decisões , Genes de Plantas , Desequilíbrio de Ligação/genética , Anotação de Sequência Molecular , Polimorfismo de Nucleotídeo Único/genética , Locos de Características Quantitativas/genética , Reprodutibilidade dos Testes
17.
Plant Physiol ; 169(1): 313-24, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26253737

RESUMO

Signaling networks among multiple phytohormones fine-tune plant defense responses to insect herbivore attack. Previously, it was reported that the synergistic combination of ethylene (ET) and jasmonic acid (JA) was required for accumulation of the maize insect resistance1 (mir1) gene product, a cysteine (Cys) proteinase that is a key defensive protein against chewing insect pests in maize (Zea mays). However, this study suggests that mir1-mediated resistance to corn leaf aphid (CLA; Rhopalosiphum maidis), a phloem sap-sucking insect pest, is independent of JA but regulated by the ET-signaling pathway. Feeding by CLA triggers the rapid accumulation of mir1 transcripts in the resistant maize genotype, Mp708. Furthermore, Mp708 provided elevated levels of antibiosis (limits aphid population)- and antixenosis (deters aphid settling)-mediated resistance to CLA compared with B73 and Tx601 maize susceptible inbred lines. Synthetic diet aphid feeding trial bioassays with recombinant Mir1-Cys Protease demonstrates that Mir1-Cys Protease provides direct toxicity to CLA. Furthermore, foliar feeding by CLA rapidly sends defensive signal(s) to the roots that trigger belowground accumulation of the mir1, signifying a potential role of long-distance signaling in maize defense against the phloem-feeding insects. Collectively, our data indicate that ET-regulated mir1 transcript accumulation, uncoupled from JA, contributed to heightened resistance to CLA in maize. In addition, our results underscore the significance of ET acting as a central node in regulating mir1 expression to different feeding guilds of insect herbivores.


Assuntos
Afídeos/fisiologia , Etilenos/farmacologia , Floema/parasitologia , Folhas de Planta/parasitologia , Proteínas de Plantas/metabolismo , Zea mays/imunologia , Zea mays/parasitologia , Animais , Afídeos/efeitos dos fármacos , Ciclopentanos/farmacologia , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Herbivoria/efeitos dos fármacos , Endogamia , Modelos Biológicos , Oxilipinas/farmacologia , Floema/efeitos dos fármacos , Exsudatos de Plantas/metabolismo , Folhas de Planta/efeitos dos fármacos , Proteínas de Plantas/genética , Ácido Salicílico/farmacologia , Transdução de Sinais/efeitos dos fármacos , Zea mays/efeitos dos fármacos , Zea mays/genética
18.
PLoS One ; 10(6): e0126185, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26090679

RESUMO

Maize (Zea mays L.) is a crop of global importance, but prone to contamination by aflatoxins produced by fungi in the genus Aspergillus. The development of resistant germplasm and the identification of genes contributing to resistance would aid in the reduction of the problem with a minimal need for intervention by farmers. Chitinolytic enzymes respond to attack by potential pathogens and have been demonstrated to increase insect and fungal resistance in plants. Here, all chitinase genes in the maize genome were characterized via sequence diversity and expression patterns. Recent evolution within this gene family was noted. Markers from within each gene were developed and used to map the phenotypic effect on resistance of each gene in up to four QTL mapping populations and one association panel. Seven chitinase genes were identified that had alleles associated with increased resistance to aflatoxin accumulation and A. flavus infection in field grown maize. The chitinase in bin 1.05 identified a new and highly significant QTL, while chitinase genes in bins 2.04 and 5.03 fell directly beneath the peaks of previously published QTL. The expression patterns of these genes corroborate possible grain resistance mechanisms. Markers from within the gene sequences or very closely linked to them are presented to aid in the use of marker assisted selection to improve this trait.


Assuntos
Aflatoxinas/metabolismo , Aspergillus flavus/metabolismo , Quitinases/genética , Interações Hospedeiro-Patógeno/genética , Zea mays/genética , Zea mays/metabolismo , Quitinases/metabolismo , Mapeamento Cromossômico , Biologia Computacional , Bases de Dados Genéticas , Genes de Plantas , Variação Genética , Fenótipo , Filogenia , Zea mays/microbiologia
19.
Front Microbiol ; 5: 364, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25101068

RESUMO

Aflatoxins are carcinogenic mycotoxins produced by some species in the Aspergillus genus, such as A. flavus and A. parasiticus. Contamination of aflatoxins in corn profusely happens at pre-harvest stage when heat and drought field conditions favor A. flavus colonization. Commercial corn hybrids are generally susceptible to A. flavus infection. An ideal strategy for preventing aflatoxin contamination is through the enhancement of corn host resistance to Aspergillus infection and aflatoxin production. Constant efforts have been made by corn breeders to develop resistant corn genotypes. Significantly low levels of aflatoxin accumulation have been determined in certain resistant corn inbred lines. A number of reports of quantitative trait loci have provided compelling evidence supporting the quantitative trait genetic basis of corn host resistance to aflatoxin accumulation. Important findings have also been obtained from the investigation on candidate resistance genes through transcriptomics approach. Elucidation of molecular mechanisms will provide in-depth understanding of the host-pathogen interactions and hence facilitate the breeding of corn with resistance to A. flavus infection and aflatoxin accumulation.

20.
Sci Rep ; 4: 4815, 2014 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-24770700

RESUMO

Aspergillus flavus is a pathogenic fungus infecting maize and producing aflatoxins that are health hazards to humans and animals. Characterizing host defense mechanism and prioritizing candidate resistance genes are important to the development of resistant maize germplasm. We investigated methods amenable for the analysis of the significance and relations among maize candidate genes based on the empirical gene expression data obtained by RT-qPCR technique from maize inbred lines. We optimized a pipeline of analysis tools chosen from various programs to provide rigorous statistical analysis and state of the art data visualization. A network-based method was also explored to construct the empirical gene expression relational structures. Maize genes at the centers in the network were considered as important candidate genes for maize DNA marker studies. The methods in this research can be used to analyze large RT-qPCR datasets and establish complex empirical gene relational structures across multiple experimental conditions.


Assuntos
Aspergillus flavus , Regulação da Expressão Gênica de Plantas , Interações Hospedeiro-Patógeno/genética , Zea mays/genética , Zea mays/microbiologia , Aflatoxinas , Transporte Biológico , Análise por Conglomerados , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Endogamia , RNA de Plantas , Zea mays/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...