Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microbiol Spectr ; : e0413923, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38651881

RESUMO

Escherichia coli is a diverse pathogen, causing a range of disease in humans, from self-limiting diarrhea to urinary tract infections (UTIs). Uropathogenic E. coli (UPEC) is the most frequently observed uropathogen in UTIs, a common disease in high-income countries, incurring billions of dollars yearly in treatment costs. Although E. coli is easily grown and identified in the clinical laboratory, genotyping the pathogen is more complicated, yet critical for reducing the incidence of disease. These goals can be achieved through whole-genome sequencing of E. coli isolates, but this approach is relatively slow and typically requires culturing the pathogen in the laboratory. To genotype E. coli rapidly and inexpensively directly from clinical samples, including but not limited to urine, we developed and validated a multiplex amplicon sequencing assay, called ColiSeq. The assay consists of targets designed for E. coli species confirmation, high resolution genotyping, and mixture deconvolution. To demonstrate its utility, we screened the ColiSeq assay against 230 clinical urine samples collected from a hospital system in Flagstaff, Arizona, USA. A limit of detection analysis demonstrated the ability of ColiSeq to identify E. coli at a concentration of ~2 genomic equivalent (GEs)/mL and to generate high-resolution genotyping at a concentration of 1 × 105 GEs/mL. The results of this study suggest that ColiSeq could be a valuable method to understand the source of UPEC strains and guide infection mitigation efforts. As sequence-based diagnostics become accepted in the clinical laboratory, workflows such as ColiSeq will provide actionable information to improve patient outcomes.IMPORTANCEUrinary tract infections (UTIs), caused primarily by Escherichia coli, create an enormous health care burden in the United States and other high-income countries. The early detection of E. coli from clinical samples, including urine, is important to target therapy and prevent further patient complications. Additionally, understanding the source of E. coli exposure will help with future mitigation efforts. In this study, we developed, tested, and validated an amplicon sequencing assay focused on direct detection of E. coli from urine. The resulting sequence data were demonstrated to provide strain level resolution of the pathogen, not only confirming the presence of E. coli, which can focus treatment efforts, but also providing data needed for source attribution and contact tracing. This assay will generate inexpensive, rapid, and reproducible data that can be deployed by public health agencies to track, diagnose, and potentially mitigate future UTIs caused by E. coli.

2.
Front Microbiol ; 14: 1287046, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38094632

RESUMO

Brucella abortus is a globally important zoonotic pathogen largely found in cattle hosts and is typically transmitted to humans through contaminated dairy products or contact with diseased animals. Despite the long, shared history of cattle and humans, little is known about how trade in cattle has spread this pathogen throughout the world. Whole genome sequencing provides unparalleled resolution to investigate the global evolutionary history of a bacterium such as B. abortus by providing phylogenetic resolution that has been unobtainable using other methods. We report on large-scale genome sequencing and analysis of B. abortus collected globally from cattle and 16 other hosts from 52 countries. We used single nucleotide polymorphisms (SNPs) to identify genetic variation in 1,074 B. abortus genomes and using maximum parsimony generated a phylogeny that identified four major clades. Two of these clades, clade A (median date 972 CE; 95% HPD, 781-1142 CE) and clade B (median date 150 BCE; 95% HPD, 515 BCE-164 CE), were exceptionally diverse for this species and are exclusively of African origin where provenance is known. The third clade, clade C (median date 949 CE; 95% HPD, 766-1102 CE), had most isolates coming from a broad swath of the Middle East, Europe, and Asia, also had relatively high diversity. Finally, the fourth major clade, clade D (median date 1467 CE; 95% HPD, 1367-1553 CE) comprises the large majority of genomes in a dominant but relatively monomorphic group that predominantly infects cattle in Europe and the Americas. These data are consistent with an African origin for B. abortus and a subsequent spread to the Middle East, Europe, and Asia, probably through the movement of infected cattle. We hypothesize that European arrival to the Americas starting in the 15th century introduced B. abortus from Western Europe through the introduction of a few common cattle breeds infected with strains from clade D. These data provide the foundation of a comprehensive global phylogeny of this important zoonotic pathogen that should be an important resource in human and veterinary epidemiology.

3.
Toxins (Basel) ; 15(9)2023 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-37755971

RESUMO

Botulinum neurotoxins are a varied group of protein toxins that share similar structures and modes of activity. They include at least seven serotypes and over forty subtypes that are produced by seven different clostridial species. These bacterial species are not limited strictly to BoNT-producers as neuro-toxigenic and non-neuro-toxigenic members have been identified within each species. The nomenclature surrounding these toxins and associated bacteria has been evolving as new isolations and discoveries have arisen, resulting in challenges in diagnostic reporting, epidemiology and food safety studies, and in the application of therapeutic products. An understanding of the intricacies regarding the nomenclature of BoNTs and BoNT-producing clostridia is crucial for communication that allows for accurate reporting of information that is pertinent to each situation.


Assuntos
Toxinas Botulínicas , Clostridium , Firmicutes , Inocuidade dos Alimentos , Sorogrupo
4.
Microb Genom ; 9(6)2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37347682

RESUMO

Although infections caused by Clostridioides difficile have historically been attributed to hospital acquisition, growing evidence supports the role of community acquisition in C. difficile infection (CDI). Symptoms of CDI can range from mild, self-resolving diarrhoea to toxic megacolon, pseudomembranous colitis, and death. In this study, we sampled C. difficile from clinical, environmental, and canine reservoirs in Flagstaff, Arizona, USA, to understand the distribution and transmission of the pathogen in a One Health framework; Flagstaff is a medium-sized, geographically isolated city with a single hospital system, making it an ideal site to characterize genomic overlap between sequenced C. difficile isolates across reservoirs. An analysis of 562 genomes from Flagstaff isolates identified 65 sequence types (STs), with eight STs being found across all three reservoirs and another nine found across two reservoirs. A screen of toxin genes in the pathogenicity locus identified nine STs where all isolates lost the toxin genes needed for CDI manifestation (tcdB, tcdA), demonstrating the widespread distribution of non-toxigenic C. difficile (NTCD) isolates in all three reservoirs; 15 NTCD genomes were sequenced from symptomatic, clinical samples, including two from mixed infections that contained both tcdB+ and tcdB- isolates. A comparative single nucleotide polymorphism (SNP) analysis of clinically derived isolates identified 78 genomes falling within clusters separated by ≤2 SNPs, indicating that ~19 % of clinical isolates are associated with potential healthcare-associated transmission clusters; only symptomatic cases were sampled in this study, and we did not sample asymptomatic transmission. Using this same SNP threshold, we identified genomic overlap between canine and soil isolates, as well as putative transmission between environmental and human reservoirs. The core genome of isolates sequenced in this study plus a representative set of public C. difficile genomes (n=136), was 2690 coding region sequences, which constitutes ~70 % of an individual C. difficile genome; this number is significantly higher than has been published in some other studies, suggesting that genome data quality is important in understanding the minimal number of genes needed by C. difficile. This study demonstrates the close genomic overlap among isolates sampled across reservoirs, which was facilitated by maximizing the genomic search space used for comprehensive identification of potential transmission events. Understanding the distribution of toxigenic and non-toxigenic C. difficile across reservoirs has implications for surveillance sampling strategies, characterizing routes of infections, and implementing mitigation measures to limit human infection.


Assuntos
Toxinas Bacterianas , Clostridioides difficile , Infecções por Clostridium , Saúde Única , Humanos , Animais , Cães , Toxinas Bacterianas/genética , Clostridioides , Infecções por Clostridium/epidemiologia , Infecções por Clostridium/veterinária , Genômica
5.
J Microbiol Methods ; 211: 106772, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37343840

RESUMO

Numerous genotyping techniques based on different principles and with different costs and levels of resolution are currently available for understanding the transmission dynamics of brucellosis worldwide. We aimed to compare the population structure of the genomes of 53 Brazilian Brucella abortus isolates using eight different genotyping methods: multiple-locus variable-number tandem-repeat analysis (MLVA8, MLVA11, MLVA16), multilocus sequence typing (MLST9, MLST21), core genome MLST (cgMLST) and two techniques based on single nucleotide polymorphism (SNP) detection (parSNP and NASP) from whole genomes. The strains were isolated from six different Brazilian states between 1977 and 2008 and had previously been analyzed using MLVA8, MLVA11, and MLVA16. Their whole genomes were sequenced, assembled, and subjected to MLST9 MLST21, cgMLST, and SNP analyses. All the genotypes were compared by hierarchical grouping method based on the average distances between the correlation matrices of each technique. MLST9 and MLST21 had the lowest level of resolution, both revealing only four genotypes. MLVA8, MLVA11, and MLVA16 had progressively increasing levels of resolution as more loci were analyzed, identifying 6, 16, and 44 genotypes, respectively. cgMLST showed the highest level of resolution, identifying 45 genotypes, followed by the SNP-based methods, both of which had 44 genotypes. In the assessed population, MLVA was more discriminatory than MLST and was easier and cheaper to perform. SNP techniques and cgMLST provided the highest levels of resolution and the results from the two methods were in close agreement. In conclusion, the choice of genotyping technique can strongly affect one's ability to make meaningful epidemiological conclusions but is dependent on available resources: while the VNTR based techniques are more indicated to high prevalence scenarios, the WGS methods are the ones with the best discriminative power and therefore recommended for outbreaks investigation.


Assuntos
Brucella abortus , Brucelose , Humanos , Brucella abortus/genética , Técnicas de Genotipagem , Genótipo , Tipagem de Sequências Multilocus/métodos , Brucelose/epidemiologia , Repetições Minissatélites , Filogenia
6.
Front Vet Sci ; 10: 1167070, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37256003

RESUMO

Onchocerca lupi (Rodonaja, 1967) is an understudied, vector-borne, filarioid nematode that causes ocular onchocercosis in dogs, cats, coyotes, wolves, and is also capable of infecting humans. Onchocercosis in dogs has been reported with increasing incidence worldwide. However, despite the growing number of reports describing canine O. lupi cases as well as zoonotic infections globally, the disease prevalence in endemic areas and vector species of this parasite remains largely unknown. Here, our study aimed to identify the occurrence of O. lupi infected dogs in northern Arizona, New Mexico, and Utah, United States and identify the vector of this nematode. A total of 532 skin samples from randomly selected companion animals with known geographic locations within the Navajo Reservation were collected and molecularly surveyed by PCR for the presence of O. lupi DNA (September 2019-June 2022) using previously published nematode primers (COI) and DNA sequencing. O. lupi DNA was detected in 50 (9.4%) sampled animals throughout the reservation. Using positive animal samples to target geographic locations, pointed hematophagous insect trapping was performed to identify potential O. lupi vectors. Out of 1,922 insects screened, 38 individual insects and 19 insect pools tested positive for the presence of O. lupi, all of which belong to the Diptera family. This increased surveillance of definitive host and biological vector/intermediate host is the first large scale prevalence study of O. lupi in companion animals in an endemic area of the United States, and identified an overall prevalence of 9.4% in companion animals as well as multiple likely biological vector and putative vector species in the southwestern United States. Furthermore, the identification of these putative vectors in close proximity to human populations coupled with multiple, local zoonotic cases highlight the One Health importance of O. lupi.

7.
PLoS Negl Trop Dis ; 16(5): e0009959, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35584143

RESUMO

BACKGROUND: Leptospirosis, caused by Leptospira bacteria, is a common zoonosis worldwide, especially in the tropics. Reservoir species and risk factors have been identified but surveys for environmental sources are rare. Furthermore, understanding of environmental Leptospira containing virulence associated genes and possibly capable of causing disease is incomplete, which may convolute leptospirosis diagnosis, prevention, and epidemiology. METHODOLOGY/PRINCIPAL FINDINGS: We collected environmental samples from 22 sites in Puerto Rico during three sampling periods over 14-months (Dec 2018-Feb 2020); 10 water and 10 soil samples were collected at each site. Samples were screened for DNA from potentially pathogenic Leptospira using the lipL32 PCR assay and positive samples were sequenced to assess genetic diversity. One urban site in San Juan was sampled three times over 14 months to assess persistence in soil; live leptospires were obtained during the last sampling period. Isolates were whole genome sequenced and LipL32 expression was assessed in vitro. We detected pathogenic Leptospira DNA at 15/22 sites; both soil and water were positive at 5/15 sites. We recovered lipL32 sequences from 83/86 positive samples (15/15 positive sites) and secY sequences from 32/86 (10/15 sites); multiple genotypes were identified at 12 sites. These sequences revealed significant diversity across samples, including four novel lipL32 phylogenetic clades within the pathogenic P1 group. Most samples from the serially sampled site were lipL32 positive at each time point. We sequenced the genomes of six saprophytic and two pathogenic Leptospira isolates; the latter represent a novel pathogenic Leptospira species likely belonging to a new serogroup. CONCLUSIONS/SIGNIFICANCE: Diverse and novel pathogenic Leptospira are widespread in the environment in Puerto Rico. The disease potential of these lineages is unknown but several were consistently detected for >1 year in soil, which could contaminate water. This work increases understanding of environmental Leptospira diversity and should improve leptospirosis surveillance and diagnostics.


Assuntos
Leptospira , Leptospirose , Humanos , Leptospirose/epidemiologia , Leptospirose/microbiologia , Filogenia , Porto Rico/epidemiologia , Solo , Água
8.
Toxins (Basel) ; 13(7)2021 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-34357945

RESUMO

At least 40 toxin subtypes of botulinum neurotoxins (BoNTs), a heterogenous group of bacterial proteins, are produced by seven different clostridial species. A key factor that drives the diversity of neurotoxigenic clostridia is the association of bont gene clusters with various genomic locations including plasmids, phages and the chromosome. Analysis of Clostridium sporogenes BoNT/B1 strain CDC 1632, C. argentinense BoNT/G strain CDC 2741, and Clostridium parabotulinum BoNT/B1 strain DFPST0006 genomes revealed bont gene clusters within plasmid-like sequences within the chromosome or nested in large contigs, with no evidence of extrachromosomal elements. A nucleotide sequence (255,474 bp) identified in CDC 1632 shared 99.5% identity (88% coverage) with bont/B1-containing plasmid pNPD7 of C. sporogenes CDC 67071; CDC 2741 contig AYSO01000020 (1.1 MB) contained a ~140 kb region which shared 99.99% identity (100% coverage) with plasmid pRSJ17_1 of C. argentinense BoNT/G strain 89G; and DFPST0006 contig JACBDK0100002 (573 kb) contained a region that shared 100% identity (99%) coverage with the bont/B1-containing plasmid pCLD of C. parabotulinum Okra. This is the first report of full-length plasmid DNA-carrying complete neurotoxin gene clusters integrated in three distinct neurotoxigenic species: C. parabotulinum, C. sporogenes and C. argentinense.


Assuntos
Toxinas Botulínicas/genética , Clostridium/genética , Toxinas Botulínicas Tipo A , Cromossomos , Clostridium botulinum/genética , DNA Bacteriano/genética , Família Multigênica , Neurotoxinas/genética , Filogenia , Plasmídeos
9.
Front Microbiol ; 12: 566908, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33716993

RESUMO

Of the seven currently known botulinum neurotoxin-producing species of Clostridium, C. parabotulinum, or C. botulinum Group I, is the species associated with the majority of human botulism cases worldwide. Phylogenetic analysis of these bacteria reveals a diverse species with multiple genomic clades. The neurotoxins they produce are also diverse, with over 20 subtypes currently represented. The existence of different bont genes within very similar genomes and of the same bont genes/gene clusters within different bacterial variants/species indicates that they have evolved independently. The neurotoxin genes are associated with one of two toxin gene cluster types containing either hemagglutinin (ha) genes or orfX genes. These genes may be located within the chromosome or extrachromosomal elements such as large plasmids. Although BoNT-producing C parabotulinum bacteria are distributed globally, they are more ubiquitous in certain specific geographic regions. Notably, northern hemisphere strains primarily contain ha gene clusters while southern hemisphere strains have a preponderance of orfX gene clusters. OrfX C. parabotulinum strains constitute a subset of this species that contain highly conserved bont gene clusters having a diverse range of bont genes. While much has been written about strains with ha gene clusters, less attention has been devoted to those with orfX gene clusters. The recent sequencing of 28 orfX C. parabotulinum strains and the availability of an additional 91 strains for analysis provides an opportunity to compare genomic relationships and identify unique toxin gene cluster characteristics and locations within this species subset in depth. The mechanisms behind the independent processes of bacteria evolution and generation of toxin diversity are explored through the examination of bacterial relationships relating to source locations and evidence of horizontal transfer of genetic material among different bacterial variants, particularly concerning bont gene clusters. Analysis of the content and locations of the bont gene clusters offers insights into common mechanisms of genetic transfer, chromosomal integration, and development of diversity among these genes.

10.
Clin Infect Dis ; 72(9): e404-e407, 2021 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-32719850

RESUMO

We report the first case of brucellosis caused by an isolate whose genome is identical that of a frog isolate from Texas, demonstrating the zoonotic potential of amphibian-type Brucella. Importantly, with such atypical Brucella, correct diagnosis cannot be performed using routine serological tests or identification methods.


Assuntos
Brucella , Brucelose , Anfíbios , Animais , Brucella/genética , Brucelose/diagnóstico , Humanos , Testes Sorológicos , Texas
11.
Front Public Health ; 8: 451, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33014966

RESUMO

Antimicrobial resistance (AMR) in the nosocomial pathogen, Acinetobacter baumannii, is becoming a serious public health threat. While some mechanisms of AMR have been reported, understanding novel mechanisms of resistance is critical for identifying emerging resistance. One of the first steps in identifying novel AMR mechanisms is performing genotype/phenotype association studies; however, performing these studies is complicated by the plastic nature of the A. baumannii pan-genome. In this study, we compared the antibiograms of 12 antimicrobials associated with multiple drug families for 84 A. baumannii isolates, many isolated in Arizona, USA. in silico screening of these genomes for known AMR mechanisms failed to identify clear correlations for most drugs. We then performed a bacterial genome wide association study (bGWAS) looking for associations between all possible 21-mers; this approach generally failed to identify mechanisms that explained the resistance phenotype. In order to decrease the genomic noise associated with population stratification, we compared four phylogenetically-related pairs of isolates with differing susceptibility profiles. RNA-Sequencing (RNA-Seq) was performed on paired isolates and differentially-expressed genes were identified. In these isolate pairs, five different potential mechanisms were identified, highlighting the difficulty of broad AMR surveillance in this species. To verify and validate differential expression, amplicon sequencing was performed. These results suggest that a diagnostic platform based on gene expression rather than genomics alone may be beneficial in certain surveillance efforts. The implementation of such advanced diagnostics coupled with increased AMR surveillance will potentially improve A. baumannii infection treatment and patient outcomes.


Assuntos
Infecções por Acinetobacter , Acinetobacter baumannii , Infecções por Acinetobacter/tratamento farmacológico , Acinetobacter baumannii/genética , Antibacterianos/farmacologia , Arizona , Farmacorresistência Bacteriana/genética , Estudo de Associação Genômica Ampla , Humanos , Transcriptoma
12.
Microbiol Resour Announc ; 9(19)2020 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-32381604

RESUMO

Streptococcus suis is primarily a pig pathogen and a zoonotic agent. Recently, the isolation of S. suis strain 10-36905 from a case of meningitis in cattle was reported. The draft genome sequence of this isolate demonstrates its divergent relationship with other S. suis strains.

13.
PLoS Pathog ; 16(3): e1008298, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32134991

RESUMO

Although acute melioidosis is the most common outcome of Burkholderia pseudomallei infection, we have documented a case, P314, where disease severity lessened with time, and the pathogen evolved towards a commensal relationship with the host. In the current study, we used whole-genome sequencing to monitor this long-term symbiotic relationship to better understand B. pseudomallei persistence in P314's sputum despite intensive initial therapeutic regimens. We collected and sequenced 118 B. pseudomallei isolates from P314's airways over a >16-year period, and also sampled the patient's home environment, recovering six closely related B. pseudomallei isolates from the household water system. Using comparative genomics, we identified 126 SNPs in the core genome of the 124 isolates or 162 SNPs/indels when the accessory genome was included. The core SNPs were used to construct a phylogenetic tree, which demonstrated a close relationship between environmental and clinical isolates and detailed within-host evolutionary patterns. The phylogeny had little homoplasy, consistent with a strictly clonal mode of genetic inheritance. Repeated sampling revealed evidence of genetic diversification, but frequent extinctions left only one successful lineage through the first four years and two lineages after that. Overall, the evolution of this population is nonadaptive and best explained by genetic drift. However, some genetic and phenotypic changes are consistent with in situ adaptation. Using a mouse model, P314 isolates caused greatly reduced morbidity and mortality compared to the environmental isolates. Additionally, potentially adaptive phenotypes emerged and included differences in the O-antigen, capsular polysaccharide, motility, and colony morphology. The >13-year co-existence of two long-lived lineages presents interesting hypotheses that can be tested in future studies to provide additional insights into selective pressures, niche differentiation, and microbial adaptation. This unusual melioidosis case presents a rare example of the evolutionary progression towards commensalism by a highly virulent pathogen within a single human host.


Assuntos
Burkholderia pseudomallei/fisiologia , Melioidose/microbiologia , Animais , Antibacterianos/administração & dosagem , Evolução Biológica , Burkholderia pseudomallei/classificação , Burkholderia pseudomallei/genética , Burkholderia pseudomallei/isolamento & purificação , Doença Crônica/terapia , Feminino , Genoma Bacteriano , Humanos , Estudos Longitudinais , Melioidose/tratamento farmacológico , Camundongos , Camundongos Endogâmicos BALB C , Pessoa de Meia-Idade , Filogenia , Simbiose
14.
Genome Biol Evol ; 12(3): 229-242, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-32108238

RESUMO

Botulinum neurotoxin-producing clostridia are diverse in the types of toxins they produce as well as in their overall genomic composition. They are globally distributed, with prevalent species and toxin types found within distinct geographic regions, but related strains containing the same toxin types may also be located on distinct continents. The mechanisms behind the spread of these bacteria and the independent movements of their bont genes may be understood through examination of their genetic backgrounds. The generation of 15 complete genomic sequences from bacteria isolated in Argentina, Australia, and Africa allows for a thorough examination of genome features, including overall relationships, bont gene cluster locations and arrangements, and plasmid comparisons, in bacteria isolated from various areas in the southern hemisphere. Insights gained from these examinations provide an understanding of the mechanisms behind the independent movements of these elements among distinct species.


Assuntos
Toxinas Botulínicas/genética , Clostridium/genética , África , Argentina , Austrália , Toxinas Botulínicas/biossíntese , Clostridium/classificação , Clostridium/metabolismo , Genoma Bacteriano , Genômica , Filogenia
15.
Microb Genom ; 5(7)2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31107202

RESUMO

Clostridioides difficile is a ubiquitous, diarrhoeagenic pathogen often associated with healthcare-acquired infections that can cause a range of symptoms from mild, self-limiting disease to toxic megacolon and death. Since the early 2000s, a large proportion of C. difficile cases have been attributed to the ribotype 027 (RT027) lineage, which is associated with sequence type 1 (ST1) in the C. difficile multilocus sequence typing scheme. The spread of ST1 has been attributed, in part, to resistance to fluoroquinolones used to treat unrelated infections, which creates conditions ideal for C. difficile colonization and proliferation. In this study, we analysed 27 isolates from a healthcare network in northern Arizona, USA, and 1352 publicly available ST1 genomes to place locally sampled isolates into a global context. Whole genome, single nucleotide polymorphism analysis demonstrated that at least six separate introductions of ST1 were observed in healthcare facilities in northern Arizona over an 18-month sampling period. A reconstruction of transmission networks identified potential nosocomial transmission of isolates, which were only identified via whole genome sequence analysis. Antibiotic resistance heterogeneity was observed among ST1 genomes, including variability in resistance profiles among locally sampled ST1 isolates. To investigate why ST1 genomes are so common globally and in northern Arizona, we compared all high-quality C. difficile genomes and identified that ST1 genomes have gained and lost a number of genomic regions compared to all other C. difficile genomes; analyses of other toxigenic C. difficile sequence types demonstrate that this loss may be anomalous and could be related to niche specialization. These results suggest that a combination of antimicrobial resistance and gain and loss of specific genes may explain the prominent association of this sequence type with C. difficile infection cases worldwide. The degree of genetic variability in ST1 suggests that classifying all ST1 genomes into a quinolone-resistant hypervirulent clone category may not be appropriate. Whole genome sequencing of clinical C. difficile isolates provides a high-resolution surveillance strategy for monitoring persistence and transmission of C. difficile and for assessing the performance of infection prevention and control strategies.


Assuntos
Clostridioides difficile/isolamento & purificação , Infecções por Clostridium/microbiologia , Infecções por Clostridium/transmissão , Infecção Hospitalar/microbiologia , Infecção Hospitalar/transmissão , Arizona , Clostridioides difficile/classificação , Clostridioides difficile/genética , Infecções por Clostridium/prevenção & controle , Infecção Hospitalar/prevenção & controle , DNA Bacteriano/genética , Genoma Bacteriano , Genômica , Humanos , Filogenia , Ribotipagem/métodos , Sequenciamento Completo do Genoma
16.
17.
Anaerobe ; 58: 53-72, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30946985

RESUMO

Clostridioides difficile infection (CDI) is an emerging public health threat and C. difficile is the most common cause of antimicrobial-associated diarrhea worldwide and the leading cause of hospital-associated infections in the US, yet the burden of community-acquired infections (CAI) is poorly understood. Characterizing C. difficile isolated from canines is important for understanding the role that canines may play in CAI. In addition, several studies have suggested that canines carry toxigenic C. difficile asymptomatically, which may imply that there are mechanisms responsible for resistance to CDI in canines that could be exploited to help combat human CDI. To assess the virulence potential of canine-derived C. difficile, we tested whether toxins TcdA and TcdB (hereafter toxins) derived from a canine isolate were capable of causing tight junction disruptions to colonic epithelial cells. Additionally, we addressed whether major differences exist between human and canine cells regarding C. difficile pathogenicity by exposing them to identical toxins. We then examined the canine gut microbiome associated with C. difficile carriage using 16S rRNA gene sequencing and searched for deviations from homeostasis as an indicator of CDI. Finally, we queried 16S rRNA gene sequences for bacterial taxa that may be associated with resistance to CDI in canines. Clostridioides difficile isolated from a canine produced toxins that reduced tight junction integrity in both human and canine cells in vitro. However, canine guts were not dysbiotic in the presence of C. difficile. These findings support asymptomatic carriage in canines and, furthermore, suggest that there are features of the gut microbiome and/or a canine-specific immune response that may protect canines against CDI. We identified two biologically relevant bacteria that may aid in CDI resistance in canines: 1) Clostridium hiranonis, which synthesizes secondary bile acids that have been shown to provide resistance to CDI in mice; and 2) Sphingobacterium faecium, which produces sphingophospholipids that may be associated with regulating homeostasis in the canine gut. Our findings suggest that canines may be cryptic reservoirs for C. difficile and, furthermore, that mechanisms of CDI resistance in the canine gut could provide insights into targeted therapeutics for human CDI.


Assuntos
Biota , Clostridioides difficile/crescimento & desenvolvimento , Infecções por Clostridium/veterinária , Doenças do Cão/microbiologia , Disbiose , Trato Gastrointestinal/microbiologia , Animais , Proteínas de Bactérias/toxicidade , Toxinas Bacterianas/toxicidade , Células CACO-2 , Sobrevivência Celular/efeitos dos fármacos , Clostridioides difficile/patogenicidade , Infecções por Clostridium/microbiologia , Cães , Enterotoxinas/toxicidade , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/microbiologia , Células Epiteliais/fisiologia , Humanos , Camundongos , Fosfolipídeos/análise , Junções Íntimas/efeitos dos fármacos
18.
PLoS One ; 14(1): e0209478, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30625164

RESUMO

Yersinia pestis was introduced to Brazil during the third plague pandemic and currently exists in several recognized foci. There is currently limited available phylogeographic data regarding Y. pestis in Brazil. We generated whole genome sequences for 411 Y. pestis strains from six Brazilian foci to investigate the phylogeography of Y. pestis in Brazil; these strains were isolated from 1966 to 1997. All 411 strains were assigned to a single monophyletic clade within the 1.ORI population, indicating a single Y. pestis introduction was responsible for the successful establishment of endemic foci in Brazil. There was a moderate level of genomic diversity but little population structure among the 411 Brazilian Y. pestis strains, consistent with a radial expansion wherein Y. pestis spread rapidly from the coast to the interior of Brazil and became ecologically established. Overall, there were no strong spatial or temporal patterns among the Brazilian strains. However, strains from the same focus tended to be more closely related and strains isolated from foci closer to the coast tended to fall in more basal positions in the whole genome phylogeny than strains from more interior foci. Overall, the patterns observed in Brazil are similar to other locations affected during the 3rd plague pandemic such as in North America and Madagascar.


Assuntos
Pandemias/história , Peste/história , Yersinia pestis/genética , Brasil/epidemiologia , DNA Bacteriano/genética , Variação Genética , Genoma Bacteriano , História do Século XIX , História do Século XX , Humanos , Filogenia , Filogeografia , Peste/epidemiologia , Peste/microbiologia , Polimorfismo de Nucleotídeo Único , Análise Espaço-Temporal , Yersinia pestis/classificação , Yersinia pestis/isolamento & purificação
19.
PLoS One ; 13(10): e0205586, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30321210

RESUMO

Microorganisms alter gene and protein expression in response to environmental conditions to adapt and survive. Whereas the genetic composition of a microbe represents an organism's biological potential, the proteins expressed provide a functional readout of the organism's response to the environment. Understanding protein expression patterns in response to specific environmental conditions furthers fundamental knowledge about a microbe, which can be especially useful for understudied organisms such as Clostridium botulinum examined herein. In addition, protein expression patterns that reproducibly occur in certain growth conditions hold potential in fields such as microbial forensics, in which determination of conditions in which an unknown possible biothreat sample had been grown may be important. To investigate the identity and reproducibility of protein profile patterns for varied strains, we defined the proteomic profiles of four Group I strains of Clostridium botulinum, a Category A biothreat agent and the organism responsible for the production of the botulinum neurotoxin (BoNT), in two different culture media grown for five days. The four C. botulinum strains produced one of three neurotoxins (BoNT/A, /B, or /F), and their protein profiles were compared to that of a fifth non-toxigenic strain of C. sporogenes. These strains each had DNA sequences available to assist in accurate protein identification. Differing culture growth phase, bacterial strain, and growth medium resulted in reproducible protein profiles, which were used to calculate relative protein abundance ratios as an internally normalized metric of microbial growth in varying conditions. The resulting protein profiles provide functional information about how four Group I C. botulinum strains and a C. sporogenes strain respond to the culture environment during growth and explores the feasibility of using these proteins to characterize unknown samples.


Assuntos
Toxinas Botulínicas/metabolismo , Clostridium botulinum/metabolismo , Toxinas Botulínicas/genética , Técnicas de Cultura de Células , Clostridium botulinum/genética , Clostridium botulinum/crescimento & desenvolvimento , Meios de Cultura/análise , Expressão Gênica , Filogenia , Polimorfismo de Nucleotídeo Único , Proteoma , Proteômica , Especificidade da Espécie
20.
PLoS One ; 13(10): e0206252, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30365516

RESUMO

Asymptomatic colonization with extended-spectrum beta-lactamase (ESBL) producing Enterobacteriaceae has been described for humans, various mammal species, and birds. Here, antimicrobial resistant bacteria were recovered from dog feces originating in Germany, Kosovo, Afghanistan, Croatia, and Ukraine, with a subset of mostly E. coli isolates obtained from a longitudinal collection over twelve months. In vitro antimicrobial resistance testing revealed various patterns of resistance against single or all investigated beta-lactam antibiotics, with none of the 101 isolates resistant against two tested carbapenem antibiotics. Whole genome sequence analysis revealed bacteria species-specific patterns for 23 antimicrobial resistance coding DNA sequences (CDS) that were unapparent from the in vitro analysis alone. Phylogenetic analysis of single nucleotide polymorphisms (SNP) revealed clonal bacterial isolates originating from different dogs, suggesting transmission between dogs in the same community. However, individual resistant E. coli clones were not detected over a period longer than seven days. Multi locus sequence typing (MLST) of 85 E. coli isolates revealed 31 different sequence types (ST) with an accumulation of ST744 (n = 9), ST10 (n = 8), and ST648 (n = 6), although the world-wide hospital-associated CTX-M beta-lactamase producing ST131 was not detected. Neither the antimicrobial resistance CDSs patterns nor the phylogenetic analysis revealed an epidemiological correlation among the longitudinal isolates collected from a period longer than seven days. No genetic linkage could be associated with the geographic origin of isolates. In conclusion, healthy dogs frequently carry ESBL-producing bacteria, independent to prior treatment, which may be transmitted between individual dogs of the same community. Otherwise, these antimicrobial resistant bacteria share few commonalities, making their presence eerily unpredictable.


Assuntos
Bactérias/genética , Bactérias/metabolismo , Genômica , Fenótipo , beta-Lactamases/biossíntese , Animais , Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Bactérias/isolamento & purificação , Cães , Farmacorresistência Bacteriana/genética , Alemanha , Tipagem de Sequências Multilocus , Filogenia , Polimorfismo de Nucleotídeo Único
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...