Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Science ; 377(6614): eabo2196, 2022 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-36007009

RESUMO

The Perseverance rover landed in Jezero crater, Mars, to investigate ancient lake and river deposits. We report observations of the crater floor, below the crater's sedimentary delta, finding that the floor consists of igneous rocks altered by water. The lowest exposed unit, informally named Séítah, is a coarsely crystalline olivine-rich rock, which accumulated at the base of a magma body. Magnesium-iron carbonates along grain boundaries indicate reactions with carbon dioxide-rich water under water-poor conditions. Overlying Séítah is a unit informally named Máaz, which we interpret as lava flows or the chemical complement to Séítah in a layered igneous body. Voids in these rocks contain sulfates and perchlorates, likely introduced by later near-surface brine evaporation. Core samples of these rocks have been stored aboard Perseverance for potential return to Earth.

3.
Nature ; 605(7911): 653-658, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35364602

RESUMO

Before the Perseverance rover landing, the acoustic environment of Mars was unknown. Models predicted that: (1) atmospheric turbulence changes at centimetre scales or smaller at the point where molecular viscosity converts kinetic energy into heat1, (2) the speed of sound varies at the surface with frequency2,3 and (3) high-frequency waves are strongly attenuated with distance in CO2 (refs. 2-4). However, theoretical models were uncertain because of a lack of experimental data at low pressure and the difficulty to characterize turbulence or attenuation in a closed environment. Here, using Perseverance microphone recordings, we present the first characterization of the acoustic environment on Mars and pressure fluctuations in the audible range and beyond, from 20 Hz to 50 kHz. We find that atmospheric sounds extend measurements of pressure variations down to 1,000 times smaller scales than ever observed before, showing a dissipative regime extending over five orders of magnitude in energy. Using point sources of sound (Ingenuity rotorcraft, laser-induced sparks), we highlight two distinct values for the speed of sound that are about 10 m s-1 apart below and above 240 Hz, a unique characteristic of low-pressure CO2-dominated atmosphere. We also provide the acoustic attenuation with distance above 2 kHz, allowing us to explain the large contribution of the CO2 vibrational relaxation in the audible range. These results establish a ground truth for the modelling of acoustic processes, which is critical for studies in atmospheres such as those of Mars and Venus.

4.
Science ; 374(6568): 711-717, 2021 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-34618548

RESUMO

Observations from orbital spacecraft have shown that Jezero crater on Mars contains a prominent fan-shaped body of sedimentary rock deposited at its western margin. The Perseverance rover landed in Jezero crater in February 2021. We analyze images taken by the rover in the 3 months after landing. The fan has outcrop faces, which were invisible from orbit, that record the hydrological evolution of Jezero crater. We interpret the presence of inclined strata in these outcrops as evidence of deltas that advanced into a lake. In contrast, the uppermost fan strata are composed of boulder conglomerates, which imply deposition by episodic high-energy floods. This sedimentary succession indicates a transition from sustained hydrologic activity in a persistent lake environment to highly energetic short-duration fluvial flows.

5.
Neurobiol Stress ; 13: 100247, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33344702

RESUMO

Studies demonstrate a role for the bed nucleus of the stria terminalis (BNST) in modulating affective behavior and stress-reward integration. To explore the dynamic nature of in vivo BNST activity associated with anxiety-like behavior in a stress-inducing context, we utilized fiber photometry and detected BNST calcium transients in mice during the novelty-suppressed feeding task (NSFT). Phasic BNST activity emerged time-locked to novel object or food pellet approach during NSFT. The parabrachial nucleus (PBN) has a large input to the BNST and is thought to function as a danger signal, in arousal responses and in feeding behavior. To explore a potential role for the PBN as a contributor to BNST activity in NSFT, we investigated whether chemogenetic regulation of PBN activity altered the dynamic BNST response synchronized to NSFT approach behavior. We found that activation of the hM3D(Gq) DREADD in the PBN enhanced the observed transient signal in the BNST synchronized to the consummatory food approach, and was associated at the behavioral level with increased latency to consume food. Because the PBN has multiple efferent pathways, we next used a transsynaptic anterograde AAV-based strategy to express hM3D(Gq) specifically in PBN-innervated BNST (BNSTPBN) neurons in male and female mice. Activation of hM3D(Gq) in these BNSTPBN neurons increased latency to consume food in female, but not male mice. To further explore the population of BNST neurons contributing to phasic BNST activity associated with NSFT, we turned to PKCδ neurons in BNST. BNST(PKCδ) neurons are implicated in stress and food-related behavior, and we previously found that the expression of this kinase is regulated in the BNST by stress in a sex-dependent manner. Here, we demonstrate close apposition of CGRP, a marker of PBN terminals, adjacent to BNST(PKCδ) cells. Finally, we find that PKCδ-expressing BNST cells exhibit a large transient signal synchronized to the consummatory food approach similar to that seen with bulk BNST activity measures. Taken together these data demonstrate phasic BNST activity at a global and cell-specific level that is driven in part by PBN activity at the time of NSFT consummatory approach behavior.

6.
J Geophys Res Planets ; 123(5): 1012-1040, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-30034979

RESUMO

The Martian surface is cold, dry, exposed to biologically harmful radiation and apparently barren today. Nevertheless, there is clear geological evidence for warmer, wetter intervals in the past that could have supported life at or near the surface. This evidence has motivated National Aeronautics and Space Administration and European Space Agency to prioritize the search for any remains or traces of organisms from early Mars in forthcoming missions. Informed by (1) stratigraphic, mineralogical and geochemical data collected by previous and current missions, (2) Earth's fossil record, and (3) experimental studies of organic decay and preservation, we here consider whether, how, and where fossils and isotopic biosignatures could have been preserved in the depositional environments and mineralizing media thought to have been present in habitable settings on early Mars. We conclude that Noachian-Hesperian Fe-bearing clay-rich fluvio-lacustrine siliciclastic deposits, especially where enriched in silica, currently represent the most promising and best understood astropaleontological targets. Siliceous sinters would also be an excellent target, but their presence on Mars awaits confirmation. More work is needed to improve our understanding of fossil preservation in the context of other environments specific to Mars, particularly within evaporative salts and pore/fracture-filling subsurface minerals.

7.
Geobiology ; 14(2): 105-28, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26498593

RESUMO

An approach to coordinated, spatially resolved, in situ carbon isotope analysis of organic matter and carbonate minerals, and sulfur three- and four-isotope analysis of pyrite with an unprecedented combination of spatial resolution, precision, and accuracy is described. Organic matter and pyrite from eleven rock samples of Neoarchean drill core express nearly the entire range of δ(13) C, δ(34) S, Δ(33) S, and Δ(36) S known from the geologic record, commonly in correlation with morphology, mineralogy, and elemental composition. A new analytical approach (including a set of organic calibration standards) to account for a strong correlation between H/C and instrumental bias in SIMS δ(13) C measurement of organic matter is identified. Small (2-3 µm) organic domains in carbonate matrices are analyzed with sub-permil accuracy and precision. Separate 20- to 50-µm domains of kerogen in a single ~0.5 cm(3) sample of the ~2.7 Ga Tumbiana Formation have δ(13) C = -52.3 ± 0.1‰ and -34.4 ± 0.1‰, likely preserving distinct signatures of methanotrophy and photoautotrophy. Pyrobitumen in the ~2.6 Ga Jeerinah Formation and the ~2.5 Ga Mount McRae Shale is systematically (13) C-enriched relative to co-occurring kerogen, and associations with uraniferous mineral grains suggest radiolytic alteration. A large range in sulfur isotopic compositions (including higher Δ(33) S and more extreme spatial gradients in Δ(33) S and Δ(36) S than any previously reported) are observed in correlation with morphology and associated mineralogy. Changing systematics of δ(34) S, Δ(33) S, and Δ(36) S, previously investigated at the millimeter to centimeter scale using bulk analysis, are shown to occur at the micrometer scale of individual pyrite grains. These results support the emerging view that the dampened signature of mass-independent sulfur isotope fractionation (S-MIF) associated with the Mesoarchean continued into the early Neoarchean, and that the connections between methane and sulfur metabolism affected the production and preservation of S-MIF during the first half of the planet's history.


Assuntos
Isótopos de Carbono/análise , Carbonatos/análise , Microbiologia Ambiental , Sedimentos Geológicos/química , Isótopos de Enxofre/análise , Ferro/análise , Compostos Orgânicos/análise , Sulfetos/análise
8.
Science ; 347(6220): 412-4, 2015 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-25515119

RESUMO

The deuterium-to-hydrogen (D/H) ratio in strongly bound water or hydroxyl groups in ancient martian clays retains the imprint of the water of formation of these minerals. Curiosity's Sample Analysis at Mars (SAM) experiment measured thermally evolved water and hydrogen gas released between 550° and 950°C from samples of Hesperian-era Gale crater smectite to determine this isotope ratio. The D/H value is 3.0 (±0.2) times the ratio in standard mean ocean water. The D/H ratio in this ~3-billion-year-old mudstone, which is half that of the present martian atmosphere but substantially higher than that expected in very early Mars, indicates an extended history of hydrogen escape and desiccation of the planet.

9.
Science ; 343(6169): 1247166, 2014 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-24324273

RESUMO

We determined radiogenic and cosmogenic noble gases in a mudstone on the floor of Gale Crater. A K-Ar age of 4.21 ± 0.35 billion years represents a mixture of detrital and authigenic components and confirms the expected antiquity of rocks comprising the crater rim. Cosmic-ray-produced (3)He, (21)Ne, and (36)Ar yield concordant surface exposure ages of 78 ± 30 million years. Surface exposure occurred mainly in the present geomorphic setting rather than during primary erosion and transport. Our observations are consistent with mudstone deposition shortly after the Gale impact or possibly in a later event of rapid erosion and deposition. The mudstone remained buried until recent exposure by wind-driven scarp retreat. Sedimentary rocks exposed by this mechanism may thus offer the best potential for organic biomarker preservation against destruction by cosmic radiation.


Assuntos
Radiação Cósmica , Evolução Planetária , Exobiologia , Meio Ambiente Extraterreno/química , Marte , Gases Nobres/análise , Biomarcadores/análise , Biomarcadores/química , Sedimentos Geológicos , Isótopos/análise , Isótopos/química , Compostos Orgânicos/análise , Compostos Orgânicos/química , Doses de Radiação , Datação Radiométrica , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...