Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bull Environ Contam Toxicol ; 104(2): 228-234, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31760444

RESUMO

Nuisance algal infestations are increasing globally in distribution and frequency. Copper-based algaecides are routinely applied to control these infestations, though there is an ever-present concern of risks to non-target species. This research evaluated risks associated with a commonly applied chelated copper algaecide (Captain® XTR; SePRO Corporation) to a sentinel non-target species (Daphnia magna) and further assessed alteration of the exposure and toxicity when a nuisance mat-forming cyanobacterium, Lyngbya wollei, was present in exposures. Aqueous copper concentrations in treatments with algae significantly decreased within 1 h after treatment and averaged 57.5% of nominal amended Cu through the experiment duration. The 48 h LC50 values were 371 µg Cu/L with no algae present in exposures and increased significantly to 531 µg Cu/L when L. wollei was simultaneously exposed. This research provides information on the short-term fate of copper and hazard assessment by incorporating targeted binding ligands, as present in operational treatments.


Assuntos
Cobre/metabolismo , Cianobactérias/metabolismo , Exposição Ambiental/prevenção & controle , Herbicidas/metabolismo , Poluentes Químicos da Água/metabolismo , Animais , Biodegradação Ambiental , Biomassa , Cobre/toxicidade , Daphnia/metabolismo , Exposição Ambiental/efeitos adversos , Herbicidas/toxicidade , Poluentes Químicos da Água/toxicidade
2.
Environ Toxicol Chem ; 37(8): 2132-2142, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29736933

RESUMO

Copper-based algaecides are routinely applied to target noxious algal blooms in freshwaters. Standard toxicity testing data with copper suggest that typical concentrations used to control algae can cause deleterious acute impacts to nontarget organisms. These "clean" water experiments lack algae, which are specifically targeted in field applications of algaecides and contain competing ligands. The present research measured the influence of algae on algaecide exposure and subsequent response of the nontarget species Daphnia magna to copper sulfate and an ethanolamine-chelated copper algaecide (Captain®). Significant shifts (p < 0.05) in D. magna 48-h median lethal concentration (LC50) values were found when algae were present in exposures along with a copper salt or a chelated copper formulation. Copper sulfate 48-h LC50 values shifted from 75.3 to 317.8 and 517.8 µg Cu/L, whereas Captain increased from 353.8 to 414.2 and 588.5 µg Cu/L in no algae, 5 × 105 , and 5 × 106 cells/mL algae treatments, respectively. Larger shifts were measured with copper sulfate exposures, although Captain was less toxic to D. magna in all corresponding treatments. Captain was more effective at controlling Scenedesmus dimorphus at most concentrations, and control was inversely proportional to toxicity to D. magna. Overall, incorporating target competing ligands (i.e., algae) into standard toxicity testing is important for accurate risk assessment, and copper formulation can significantly alter algaecidal efficacy and risks to nontarget organisms. Environ Toxicol Chem 2018;37:2132-2142. © 2018 SETAC.


Assuntos
Cobre/toxicidade , Daphnia/efeitos dos fármacos , Eutrofização , Herbicidas/toxicidade , Testes de Toxicidade , Animais , Sulfato de Cobre/toxicidade , Exposição Ambiental/análise , Água Doce , Dinâmica não Linear , Análise de Regressão , Poluentes Químicos da Água/toxicidade
3.
Bull Environ Contam Toxicol ; 99(3): 365-371, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28681162

RESUMO

Filamentous mat-forming cyanobacteria are increasingly impairing uses of freshwater resources. To effectively manage, a better understanding of control measures is needed. Copper (Cu)-based algaecide formulations are often applied to reactively control nuisance cyanobacterial blooms. This laboratory research assessed typical field exposure scenarios for the ability of Cu to partition to, and accumulate in Lyngbya wollei. Exposure factors (Cu concentration × duration) of 4, 8, 16, 24, 32 h were tested across three aqueous Cu concentrations (1, 2, 4 ppm). Results indicated that internally accumulated copper correlated with control of L. wollei, independent of adsorbed copper. L. wollei control was determined by filament viability and chlorophyll a concentrations. Similar exposure factors elicited similar internalized copper levels and consequent responses of L. wollei. Ultimately, a "concentration-exposure-time" (CET) model was created to assist water resource managers in selecting an appropriate treatment regime for a specific in-water infestation. By assessing the exposure concentration and duration required to achieve the internal threshold of copper (i.e., critical burden) that elicits control, water management objectives can be achieved while simultaneously decreasing the environmental loading of copper and potential for non-target species risks.


Assuntos
Cobre/metabolismo , Cianobactérias/metabolismo , Poluentes Químicos da Água/metabolismo , Adsorção , Animais , Clorofila , Clorofila A , Cobre/análise , Cobre/toxicidade , Água Doce , Herbicidas/metabolismo , Herbicidas/toxicidade , Cinética , Água , Poluentes Químicos da Água/toxicidade
4.
Environ Manage ; 55(4): 983-90, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25549997

RESUMO

Accurate predictions of nuisance algae responses to algicide exposures are needed to guide management decisions. Copper sorption and responses of Lyngbya wollei (Farlow ex Gomont) Speziale and Dyck were measured in the laboratory and two areas in Lay Lake (AL, USA) to treatments of Captain(®) XTR (SePRO Corporation; chelated copper algicide) and a sequential treatment of GreenClean(®) Liquid (BioSafe Systems, LLC; peroxygen algicide) combined with Hydrothol(®) 191 (United Phosphorus, Inc.; endothall algicide) followed by Captain XTR. Measured filament viability in laboratory exposures predicted Captain XTR alone could control L. wollei in Lay Lake, with 2 mg Cu/g algae EC75. This produced a targeted field treatment of 9.7 kg Cu/ha which was divided into three applications of 0.3 mg Cu/L as Captain XTR in the treatment areas. Laboratory and field experiments indicated treatments of Captain XTR alone and the combination treatment resulted in comparable copper sorption and responses of L. wollei. Copper adsorbed greater to L. wollei in laboratory experiments than in the treated areas of Lay Lake with comparable exposures (2 mg Cu/g L. wollei). However, responses and infused copper were similar and correlated in laboratory experiments and treated areas of Lay Lake indicating infused copper is critical for governing toxicity. Laboratory exposures as mg Cu/g algae accurately predicted the necessary algicide exposure required to attain the critical burden of infused copper and elicit desired responses of L. wollei in treated areas of Lay Lake.


Assuntos
Cobre/toxicidade , Cianobactérias/efeitos dos fármacos , Proliferação Nociva de Algas/efeitos dos fármacos , Herbicidas/toxicidade , Lagos , Cobre/análise , Ácidos Dicarboxílicos/farmacologia , Herbicidas/análise , North Carolina , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...