Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Med Phys ; 48(11): 7323-7332, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34559413

RESUMO

PURPOSE: Precise correlation between three-dimensional (3D) imaging and histology can aid biomechanical modeling of the breast. We develop a framework to register ex vivo images to histology using a novel cryo-fluorescence tomography (CFT) device. METHODS: A formalin-fixed cadaveric breast specimen, including chest wall, was subjected to high-resolution magnetic resonance (MR) imaging. The specimen was then frozen and embedded in an optimal cutting temperature (OCT) compound. The OCT block was placed in a CFT device with an overhead camera and 50 µm thick slices were successively shaved off the block. After each shaving, the block-face was photographed. At select locations including connective/adipose tissue, muscle, skin, and fibroglandular tissue, 20 µm sections were transferred onto cryogenic tape for manual hematoxylin and eosin staining, histological assessment, and image capture. A 3D white-light image was automatically reconstructed from the photographs by aligning fiducial markers embedded in the OCT block. The 3D MR image, 3D white-light image, and photomicrographs were rigidly registered. Target registration errors (TREs) were computed based on 10 pairs of points marked at fibroglandular intersections. The overall MR-histology registration was used to compare the MR intensities at tissue extraction sites with a one-way analysis of variance. RESULTS: The MR image to CFT-captured white-light image registration achieved a mean TRE of 0.73 ± 0.25 mm (less than the 1 mm MR slice resolution). The block-face white-light image and block-face photomicrograph registration showed visually indistinguishable alignment of anatomical structures and tissue boundaries. The MR intensities at the four tissue sites identified from histology differed significantly (p < 0.01). Each tissue pair, except the skin-connective/adipose tissue pair, also had significantly different MR intensities (p < 0.01). CONCLUSIONS: Fine sectioning in a highly controlled imaging/sectioning environment enables accurate registration between the MR image and histology. Statistically significant differences in MR signal intensities between histological tissues are indicators for the specificity of correlation between MRI and histology.


Assuntos
Técnicas Histológicas , Imageamento Tridimensional , Mama/diagnóstico por imagem , Marcadores Fiduciais , Humanos , Imageamento por Ressonância Magnética
2.
Fam Cancer ; 17(2): 287-294, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-28988289

RESUMO

Individuals with Li-Fraumeni syndrome (LFS) have a significantly increased lifetime cancer risk affecting multiple organ sites. Therefore, novel comprehensive screening approaches are necessary to improve cancer detection and survival in this population. The objective of this study was to determine the diagnostic performance of whole body MRI (WB-MRI) and dedicated brain MRI screening as part of a comprehensive screening clinic called Li-Fraumeni Education and Early Detection (LEAD) at MD Anderson Cancer Center. Adult (≥21 year old) and pediatric (<21 year old) patients were referred to the LEAD clinic by healthcare providers or self-referred and screened at 6 month intervals. During the study period, 63 LFS individuals were seen in the LEAD clinic including 49 adults (11 male, 38 female) and 14 children (7 male, 7 female). Fifty-three of 63 potentially eligible individuals underwent baseline WB-MRI (41 adults and 12 children) with primary tumors detected in six patients, tumor recurrence in one patient and cancer metastases in one patient. Thirty-five of 63 patients (24 adults and 11 children) underwent baseline brain MRI with primary brain tumors detected in three individuals, also noted on subsequent WB-MRI scans. Three additional tumors were diagnosed that in retrospect review were missed on the initial scan (false negatives) and one tumor noted, but not followed up clinically, was prospectively found to be malignant. The high incidence of asymptomatic tumors identified in this initial screening (13%), supports the inclusion of WB-MRI and brain MRI in the clinical management of individuals with LFS.


Assuntos
Detecção Precoce de Câncer/métodos , Predisposição Genética para Doença , Síndrome de Li-Fraumeni/diagnóstico por imagem , Recidiva Local de Neoplasia/diagnóstico por imagem , Proteína Supressora de Tumor p53/genética , Adolescente , Adulto , Doenças Assintomáticas/epidemiologia , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Criança , Pré-Escolar , Feminino , Mutação em Linhagem Germinativa , Heterozigoto , Humanos , Incidência , Lactente , Recém-Nascido , Síndrome de Li-Fraumeni/epidemiologia , Síndrome de Li-Fraumeni/genética , Imageamento por Ressonância Magnética/métodos , Masculino , Pessoa de Meia-Idade , Recidiva Local de Neoplasia/epidemiologia , Recidiva Local de Neoplasia/genética , Imagem Corporal Total/métodos , Adulto Jovem
3.
World J Radiol ; 8(7): 707-15, 2016 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-27551341

RESUMO

AIM: To compare breath-hold cartesian volumetric interpolated breath-hold examination (cVIBE) and free-breathing radial VIBE (rVIBE) and determine whether rVIBE could replace cVIBE in routine liver magnetic resonance imaging (MRI). METHODS: In this prospective study, 15 consecutive patients scheduled for routine MRI of the abdomen underwent pre- and post-contrast breath-hold cVIBE imaging (19 s acquisition time) and free-breathing rVIBE imaging (111 s acquisition time) on a 1.5T Siemens scanner. Three radiologists with 2, 4, and 8 years post-fellowship experience in abdominal imaging evaluated all images. The radiologists were blinded to the sequence types, which were presented in a random order for each patient. For each sequence, the radiologists scored the cVIBE and rVIBE images for liver edge sharpness, hepatic vessel clarity, presence of artifacts, lesion conspicuity, fat saturation, and overall image quality using a five-point scale. RESULTS: Compared to rVIBE, cVIBE yielded significantly (P < 0.001) higher scores for liver edge sharpness (mean score, 3.87 vs 3.37), hepatic-vessel clarity (3.71 vs 3.18), artifacts (3.74 vs 3.06), lesion conspicuity (3.81 vs 3.2), and overall image quality (3.91 vs 3.24). cVIBE and rVIBE did not significantly differ in quality of fat saturation (4.12 vs 4.03, P = 0.17). The inter-observer variability with respect to differences between rVIBE and cVIBE scores was close to zero compared to random error and inter-patient variation. Quality of rVIBE images was rated as acceptable for all parameters. CONCLUSION: rVIBE cannot replace cVIBE in routine liver MRI. At 1.5T, free-breathing rVIBE yields acceptable, although slightly inferior image quality compared to breath-hold cVIBE.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA