Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Anal Chem ; 92(19): 13462-13469, 2020 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-32907325

RESUMO

Operando high-throughput evaluation of heterogeneous catalysts by laser-activated membrane introduction mass spectrometry (LAMIMS) elucidates the Pt loading dependence of methylcyclohexane dehydrogenation on platinized γ-alumina beads. A CO2 marking laser rapidly and sequentially heats catalyst beads positioned on a heat-dissipating carbon paper support that overlays a silicone membrane, separating the bead library reaction zone from a quadrupole mass analyzer. The toluene m/z peak varies logarithmically with Pt loading, suggesting that reactivity includes factors that are negatively correlated to Pt loading. These factors may include the Pt/γ-Al2O3 surface interfacial region as one component of a heterogeneous catalytically active surface area/mass. This work demonstrates LAMIMS as a broadly applicable high-throughput operando screening method for heterogeneous catalysts.

2.
Chem Commun (Camb) ; 50(25): 3296-8, 2014 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-24527490

RESUMO

The metal-organic framework Ni-DOBDC was modified with pyridine molecules to make the normally hydrophilic internal surface more hydrophobic. Experiments and molecular simulations show that the pyridine modification reduces H2O adsorption while retaining substantial CO2 capacity under the conditions of interest for carbon capture from flue gas.

3.
Langmuir ; 27(18): 11451-6, 2011 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-21786829

RESUMO

Metal-organic frameworks with unsaturated metal centers in their crystal structures, such as Ni/DOBDC and Mg/DOBDC, are promising adsorbents for carbon dioxide capture from flue gas due to their high CO(2) capacities at subatmospheric pressures. However, stability is a critical issue for their application. In this paper, the stabilities of Ni/DOBDC and Mg/DOBDC are investigated. Effects of steam conditioning, simulated flue gas conditioning, and long-term storage on CO(2) adsorption capacities are considered. Results show that Ni/DOBDC can maintain its CO(2) capacity after steam conditioning and long-term storage, whereas Mg/DOBDC does not. Nitrogen isotherms for Mg/DOBDC show a drop in surface area after steaming, corresponding to the decrease in CO(2) adsorption, which may be caused by a reduction of unsaturated metal centers in its structure. Conditioning with dry simulated flue gas at room temperature only slightly affects CO(2) adsorption in Ni/DOBDC. However, introducing water vapor into the simulated flue gas further reduces the CO(2) capacity of Ni/DOBDC.

4.
Langmuir ; 26(17): 14301-7, 2010 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-20707342

RESUMO

Metal-organic frameworks (MOFs) have recently attracted intense research interest because of their permanent porous structures, huge surface areas, and potential applications as novel adsorbents and catalysts. In order to provide a basis for consideration of MOFs for removal of carbon dioxide from gases containing water vapor, such as flue gas, we have studied adsorption equilibrium of CO(2), H(2)O vapor, and their mixtures and also rates of CO(2) adsorption in two MOFs: HKUST-1 (CuBTC) and Ni/DOBDC (CPO-27-Ni or Ni/MOF-74). The MOFs were synthesized via solvothermal methods, and the as-synthesized products were solvent exchanged and regenerated before experiments. Pure component adsorption equilibria and CO(2)/H(2)O binary adsorption equilibria were studied using a volumetric system. The effects of H(2)O adsorption on CO(2) adsorption for both MOF samples were determined, and the results for 5A and NaX zeolites were included for comparison. The hydrothermal stabilities for the two MOFs over the course of repetitive measurements of H(2)O and CO(2)/H(2)O mixture equilibria were also studied. CO(2) adsorption rates from helium for the MOF samples were investigated by using a unique concentration-swing frequency response (CSFR) system. Mass transfer into the MOFs is rapid with the controlling resistance found to be macropore diffusion, and rate parameters were established for the mechanism.


Assuntos
Dióxido de Carbono/química , Níquel/química , Compostos Organometálicos/química , Água/química , Adsorção , Estruturas Metalorgânicas , Tamanho da Partícula , Propriedades de Superfície
5.
J Am Chem Soc ; 131(51): 18198-9, 2009 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-19954193

RESUMO

A diverse collection of 14 metal-organic frameworks (MOFs) was screened for CO(2) capture from flue gas using a combined experimental and modeling approach. Adsorption measurements are reported for the screened MOFs at room temperature up to 1 bar. These data are used to validate a generalized strategy for molecular modeling of CO(2) and other small molecules in MOFs. MOFs possessing a high density of open metal sites are found to adsorb significant amounts of CO(2) even at low pressure. An excellent correlation is found between the heat of adsorption and the amount of CO(2) adsorbed below 1 bar. Molecular modeling can aid in selection of adsorbents for CO(2) capture from flue gas by screening a large number of MOFs.

6.
J Am Chem Soc ; 131(43): 15834-42, 2009 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-19810730

RESUMO

Hydrothermal stability is a pertinent issue to address for many industrial applications where percent levels of water can be present at temperatures ranging from subambient to several hundred degrees. Our objective is to understand relative stabilities of MOF materials through experimental testing combined with molecular modeling. This will enable the ultimate design of materials with improved hydrothermal stability, while maintaining the properties of interest. The tools that we have employed for these studies include quantum mechanical calculations based upon cluster models and combinatorial steaming methods whereby a steam stability map was formulated according to the relative stability of different materials. The experimental steaming method allows for high throughput screening of materials stability over a broad range of steam levels as well as in-depth investigation of structural transformations under more highly resolved conditions, while the cluster model presented here yields the correct trends in hydrothermal stability. Good agreement was observed between predicted relative stabilities of materials by molecular modeling and experimental results. Fundamental information from these studies has provided insight into how metal composition and coordination, chemical functionality of organic linker, framework dimensionality, and interpenetration affect the relative stabilities of PCP materials. This work suggests that the strength of the bond between the metal oxide cluster and the bridging linker is important in determining the hydrothermal stability of the PCP. Although the flexibility of the framework plays a role, it is not as important as the metal-linker bond strength. This demonstration of alignment between experimental and calculated observations has proven the validity of the method, and the insight derived herein insight facilitates direction in designing ideal MOF materials with improved hydrothermal stability for desired applications.

7.
J Comb Chem ; 8(2): 199-212, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16529515

RESUMO

The synthesis and analysis of inorganic material combinatorial libraries by a directed-sorting, split-pool bead method was demonstrated. Directed-sorting, split-pool, metal-loaded libraries were synthesized by adsorbing metal salts (H2PtCl6, SnCl2, CuCl2, and NiCl2) and metal standards (Pt, Cu, Ni in HCl) onto 2-mg porous gamma-alumina beads in 96- or 384-well plates. A matrix algorithm for the synthesis of bead libraries treated each bead as a member of a row or column of a given matrix. Computer simulations and manual tracking of the sorting process were used to assess library diversity. The bead compositions were analyzed by energy-dispersive X-ray spectroscopy, X-ray fluorescence spectroscopy, electron probe microanalysis, inductively coupled plasma atomic emission spectroscopy, and inductively coupled plasma mass spectroscopy. The metal-loaded beads were analyzed by laser-activated membrane introduction mass spectroscopy (LAMIMS) for catalytic activity using methylcyclohexane dehydrogenation to toluene as a probe reaction. The catalytic activity of individual beads that showed minimal (approximately 20% of that of Pt on alumina) to high conversion could be determined semiquantitatively by LAMIMS. This method, therefore, provides an alternative to screening using microreactors for reactors that employ catalysts in the form of beads. The directed-sorting method offers the potential for synthesis of focused libraries of inorganic materials through relatively simple benchtop split-pool chemistry.


Assuntos
Catálise , Técnicas de Química Combinatória/métodos , Metais , Cloretos , Simulação por Computador , Vácuo
8.
J Comb Chem ; 4(6): 569-75, 2002.
Artigo em Inglês | MEDLINE | ID: mdl-12425601

RESUMO

The synthesis and analysis of inorganic material combinatorial libraries by the split-pool bead method were demonstrated at the proof-of-concept level. Millimeter-size spherical beads of porous gamma-alumina, a commonly used support material for heterogeneous catalysts, were modified with Al(13)O(4)(OH)(24)(H(2)O)(12)(7+) cations in order to promote irreversible adsorption of the anionic fluorescent dyes Cascade Blue, Lucifer Yellow, and Sulforhodamine 101. The compositions of individual beads were easily determined through three split-pool cycles using a conventional fluorescence plate reader. Small split-pool material libraries were made by adsorbing noble metal salts (H(2)PtCl(6), H(2)IrCl(6), and RhCl(3)) into the beads. Analysis of these beads by micro-X-ray fluorescence showed that quantitative adsorption of metal salts without cross-contamination of beads could be achieved at levels (0.3 wt % metal loading) relevant to heterogeneous catalysis. The method offers the potential for synthesis of rather large libraries of inorganic materials through relatively simple benchtop split-pool chemistry.

9.
Anal Chem ; 74(9): 1933-8, 2002 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-12033288

RESUMO

Laser-activated membrane introduction mass spectrometry (LAMIMS), a high-throughput screening method, evaluates heterogeneous catalysts under realistic reactor conditions. It is a precise, versatile system requiring no moving parts. The catalyst array is supported on carbon paper overlaid upon a silicone rubber membrane configured in a variation of membrane introduction mass spectrometry as introduced by Cooks. The carbon paper serves as a heat-dissipating gas diffusion layer that permits laser heating of catalyst samples far above the decomposition temperature of the polymer membrane that separates the array from the mass spectrometer vacuum chamber. A computer-controlled CO2 bar code writing laser is used for fine-tune heating of the catalyst spots above the base temperature of the LAMIMS reactor. The detailed design and performance of LAMIMS is demonstrated on arrays of "real world" bulk water-gas shift catalysts using natural and isotopically labeled reactor feed streams. A bulk catalyst array spot can be evaluated for activity and selectivity in as little as 1.5 min. All array screening results were confirmed by industrial microreactor evaluations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA