Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cancer Immunol Immunother ; 73(2): 22, 2024 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-38279992

RESUMO

Mouse tumour models are extensively used as a pre-clinical research tool in the field of oncology, playing an important role in anticancer drugs discovery. Accordingly, in cancer genomics research, the demand for next-generation sequencing (NGS) is increasing, and consequently, the need for data analysis pipelines is likewise growing. Most NGS data analysis solutions to date do not support mouse data or require highly specific configuration for their use. Here, we present a genome analysis pipeline for mouse tumour NGS data including the whole-genome sequence (WGS) data analysis flow for somatic variant discovery, and the RNA-seq data flow for differential expression, functional analysis and neoantigen prediction. The pipeline is based on standards and best practices and integrates mouse genome references and annotations. In a recent study, the pipeline was applied to demonstrate the efficacy of low dose 6-thioguanine (6TG) treatment on low-mutation melanoma in a pre-clinical mouse model. Here, we further this study and describe in detail the pipeline and the results obtained in terms of tumour mutational burden (TMB) and number of predicted neoantigens, and correlate these with 6TG effects on tumour volume. Our pipeline was expanded to include a neoantigen analysis, resulting in neopeptide prediction and MHC class I antigen presentation evaluation. We observed that the number of predicted neoepitopes were more accurate indicators of tumour immune control than TMB. In conclusion, this study demonstrates the usability of the proposed pipeline, and suggests it could be an essential robust genome analysis platform for future mouse genomic analysis.


Assuntos
Melanoma , Tioguanina , Animais , Camundongos , Tioguanina/farmacologia , Genômica/métodos , Mutação , RNA-Seq
2.
Oncoimmunology ; 12(1): 2158610, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36545256

RESUMO

Immune-checkpoint inhibitors (ICI) are highly effective in reinvigorating T cells to attack cancer. Nevertheless, a large subset of patients fails to benefit from ICI, partly due to lack of the cancer neoepitopes necessary to trigger an immune response. In this study, we used the thiopurine 6-thioguanine (6TG) to induce random mutations and thus increase the level of neoepitopes presented by tumor cells. Thiopurines are prodrugs which are converted into thioguanine nucleotides that are incorporated into DNA (DNA-TG), where they can induce mutation through single nucleotide mismatching. In a pre-clinical mouse model of a mutation-low melanoma cell line, we demonstrated that 6TG induced clinical-grade DNA-TG integration resulting in an improved tumor control that was strongly T cell dependent. 6TG exposure increased the tumor mutational burden, without affecting tumor cell proliferation and cell death. Moreover, 6TG treatment re-shaped the tumor microenvironment by increasing T and NK immune cells, making the tumors more responsive to immune-checkpoint blockade. We further validated that 6TG exposure improved tumor control in additional mouse models of melanoma. These findings have paved the way for a phase I/II clinical trial that explores whether treatment with thiopurines can increase the proportion of otherwise treatment-resistant cancer patients who may benefit from ICI therapy (NCT05276284).


Assuntos
Melanoma , Tioguanina , Animais , Camundongos , Inibidores de Checkpoint Imunológico , Melanoma/tratamento farmacológico , Melanoma/genética , Mutação , Tioguanina/farmacologia , Tioguanina/uso terapêutico , Microambiente Tumoral , Ensaios Clínicos Fase I como Assunto , Ensaios Clínicos Fase II como Assunto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...