Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 856(Pt 1): 159053, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36179849

RESUMO

Pesticide misuse incidents are reported worldwide each year. The potential exposure to pesticides creates a concern for occupants in affected homes, apartments, and other occupied buildings. Pesticides that are improperly applied within these locations may require remediation prior to reoccupation. Incident response personnel rely heavily on data from sampling results to identify residue levels and determine when site remediation is complete. Surface wipe samples are often collected for this purpose. Therefore, it is important to ensure sampling and analysis procedures are well established for the contaminants of concern, particularly for wipe sampling variables that can affect analysis results. This investigation evaluated the effects of surface wipe media, wipe wetting solvents, pesticide concentrations effects, composite sampling, surface types, and pesticide formulation effects on analysis results for fipronil, permethrin, and deltamethrin. Tested surface types included galvanized steel, vinyl tile, and plywood. Wipe media included pre-packaged, sterile cotton gauze, pre-cleaned cotton twill, and a pre-packaged, pre-wetted wipes. Surface recovery results are reported for commercially available fipronil formulations and compared to technical grade fipronil solutions. Fipronil recoveries were 92-107 % for twill wipes, 81-98 % for cotton gauze wipes, and 79 % for pre-packaged, pre-wetted wipes on a galvanized steel surface. Permethrin recoveries were 83-116 % for twill wipes, 66-94 % for cotton gauze wipes, and 73 % for pre-packaged, pre-wetted wipes on a galvanized steel surface. Deltamethrin recoveries were 67-88 % for twill wipes, 55-71 % for cotton gauze wipes, and 63 % for pre-packaged, pre-wetted wipes on a galvanized steel surface. The data collected in this study can inform surface wipe sampling methods and potentially assist in obtaining more accurate sampling data associated with pesticide misuse incidents involving the target analytes.


Assuntos
Praguicidas , Substâncias Perigosas , Monitoramento Ambiental/métodos , Permetrina , Aço
2.
J Toxicol Environ Health A ; 85(15): 622-647, 2022 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-35499183

RESUMO

The unexpected release of chemicals into the environment requires estimation of human health risks, followed by risk management decisions. When environmental concentrations of toxicants are associated with adverse health risks, the limit for analytical measurement needs to be at or below the risk threshold. The aim of this study was to assess chemical contaminants that have the potential to produce acute adverse human health impacts following oral consumption of contaminated drinking water. The U.S. Environmental Protection Agency's (EPA) Candidate Contaminant List, version 4 (CCL4) and EPA's Selected Analytical Methods (SAM) document were screened to identify 24 chemicals that exist as a solid or liquid at room temperature, with acute oral LD50 (lethal dose in 50% of the test population) values < 500 mg/kg-d and water solubility > 500 mg/L at ambient temperature. While these screening criteria were used to identify prioritized needs for targeted research, it does not imply that other chemicals on the CCL4 and SAM lists are not issues in acute and chronic exposures. Of these 24 most toxic and most soluble chemicals, this evaluation identified 6 chemicals (2-chlorovinylarsonous acid, lewisite, N-nitrosopyrrolidine, N-nitrosodiethylamine, 3-hydroxycarbofuran, and triethylamine) lacking either sufficient toxicity value information or analytical sensitivity required to detect at levels protective against adverse effects in adults for acute exposures. This assessment provides an approach for gap identification and highlights research needs related to water contamination incident involving these six priority chemicals.


Assuntos
Água Potável , Substâncias Perigosas , Adulto , Substâncias Perigosas/toxicidade , Humanos , Medição de Risco , Poluição da Água
3.
Appl Biosaf ; 26(1): 33-41, 2021 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-34017220

RESUMO

INTRODUCTION: This effort investigated formaldehyde vapor characteristics under various environmental conditions by the analyses of air samples collected over a time-course. This knowledge will help responders achieve desired formaldehyde exposure parameters for decontamination of affected spaces after a biological contamination incident. METHODS: Prescribed masses of paraformaldehyde and formalin were sublimated or evaporated, respectively, to generate formaldehyde vapor. Adsorbent cartridges were used to collect air samples from the test chamber at predetermined times. A validated method was used to extract the cartridges and analyze for formaldehyde via liquid chromatography. In addition, material demand for the formaldehyde was evaluated by inclusion of arrays of Plexiglas panels in the test chamber to determine the impact of varied surface areas within the test chamber. Temperature was controlled with a circulating water bath connected to a radiator and fan inside the chamber. Relative humidity was controlled with humidity fixed-point salt solutions and water vapor generated from evaporated water. RESULTS: Low temperature trials (approximately 10°C) resulted in decreased formaldehyde air concentrations throughout the 48-hour time-course when compared with formaldehyde concentrations in the ambient temperature trials (approximately 22°C). The addition of clear Plexiglas panels to increase the surface area of the test chamber interior resulted in appreciable decreases of formaldehyde air concentration when compared to an empty test chamber. CONCLUSION: This work has shown that environmental variables and surface-to-volume ratios in the decontaminated space may affect the availability of formaldehyde in the air and, therefore, may affect decontamination effectiveness.

4.
Appl Biosaf ; 26(3): 139-53, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-32982605

RESUMO

Introduction: This study investigated formaldehyde decontamination efficacy against dried Bacillus spores on porous and non-porous test surfaces, under various environmental conditions. This knowledge will help responders determine effective formaldehyde exposure parameters to decontaminate affected spaces following a biological agent release. Methods: Prescribed masses of paraformaldehyde or formalin were sublimated or evaporated, respectively, to generate formaldehyde vapor within a bench-scale test chamber. Adsorbent cartridges were used to measure formaldehyde vapor concentrations in the chamber at pre-determined times. A validated method was used to extract the cartridges and analyze for formaldehyde via liquid chromatography. Spores of Bacillus globigii, Bacillus thuringiensis, and Bacillus anthracis were inoculated and dried onto porous bare pine wood and non-porous painted concrete material coupons. A series of tests was conducted where temperature, relative humidity, and formaldehyde concentration were varied, to determine treatment efficacy outside of conditions where this decontaminant is well-characterized (laboratory temperature and humidity and 12 mg/L theoretical formaldehyde vapor concentration) to predict decontamination efficacy in applications that may arise following a biological incident. Results: Low temperature trials (approximately 10°C) resulted in decreased formaldehyde air concentrations throughout the 48-hour time-course when compared with formaldehyde concentrations collected in the ambient temperature trials (approximately 22°C). Generally, decontamination efficacy on wood was lower for all three spore types compared with painted concrete. Also, higher recoveries resulted from painted concrete compared to wood, consistent with historical data on these materials. The highest decontamination efficacies were observed on the spores subjected to the longest exposures (48 hours) on both materials, with efficacies that gradually decreased with shorter exposures. Adsorption or absorption of the formaldehyde vapor may have been a factor, especially during the low temperature trials, resulting in less available formaldehyde in the air when measured. Conclusion: Environmental conditions affect formaldehyde concentrations in the air and thereby affect decontamination efficacy. Efficacy is also impacted by the material with which the contaminants are in contact.

5.
Sci Total Environ ; 655: 539-546, 2019 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-30476833

RESUMO

Pesticide misuse incidents in residential indoor areas are typically associated with misapplications that are inconsistent with the label directions of the product. Surface wipe sampling and analysis procedures are relied upon to evaluate the extent of indoor contamination and the remediation efforts successfully. In general, surface wipe sampling procedures are widely varied, which can complicate the comparison of the results and data interpretation. Wipe sampling parameters were studied for the insecticides malathion and carbaryl. The parameters evaluated include wipe media, wetting solvents, composite sampling, surface concentration, and the influence of differing product formulations. Porous and nonporous surfaces tested include vinyl tile, plywood and painted drywall (porous/permeable) and stainless steel and glass (nonporous/impermeable). Specific wipe materials included pre-packaged sterile-cotton gauze, pre-cleaned cotton twill, cotton balls, and a pre-packaged, pre-wetted wipe. Commercially available insecticide formulations were tested, and the results were compared to surfaces fortified with neat analytes to determine surface recovery results (efficiency). A sampling procedure to measure pesticide residues was developed, and variables associated with the sampling methods were evaluated to clarify how estimations of surface residues are impacted. Malathion recoveries were 73-86% for twill and pre-wetted, pre-packaged isopropanol wipes on nonporous materials. Malathion formulations ranged from 78 to 124% for pre-wetted, pre-packaged isopropanol wipes and cotton gauze wipes on nonporous materials. Carbaryl and carbaryl formulation recoveries were 82-115% and 77-110%, respectively, on nonporous surfaces for all tested wipe materials. While not every wipe sampling variable could be tested, the collected information from this study may be useful and applied to sampling plans for classes of chemicals with similar physicochemical properties.


Assuntos
Poluentes Atmosféricos/análise , Poluição do Ar em Ambientes Fechados/análise , Monitoramento Ambiental/métodos , Habitação/normas , Resíduos de Praguicidas/análise , Manejo de Espécimes/métodos , Cromatografia Gasosa-Espectrometria de Massas , Solventes/química , Propriedades de Superfície
6.
Anal Methods ; 10(46): 5455-5590, 2018 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-30598702

RESUMO

Sodium fluoroacetate or Compound 1080 is a rodenticide registered in the United States for use in livestock protection collars. The collars are employed to control predation on herd animals (i.e., killing of cattle by wolves or coyotes). Sodium fluoroacetate is acutely toxic to humans and has potential to cause mass casualties if used to intentionally contaminate water systems. The U.S. Environmental Protection Agency (EPA) is responsible for characterization and remediation if such an incident occurs in the civilian sector. In support of that goal, EPA has published the Selected Analytical Methods for Remediation and Recovery (SAM) document that provides sampling and analysis methods for many hazardous chemicals such as sodium fluoroacetate. Ideal SAM methods require limited sample preparation steps and utilize widely available equipment to ensure the ability for maximum laboratory participation in a large-scale response. The present paper describes a direct aqueous injection (DAI) method for liquid chromatography/tandem mass spectrometry (LC-MS/MS) analysis of the fluoroacetate anion (FAA) in potable water. Sample preservation and filtration are the only pre-processing steps required. FAA is chromatographically separated on an octylsilane (C8) reversed phase column. Separation is attributed to ion-exchange interactions. Electrospray ionization (ESI) in negative mode and detection by tandem mass spectrometry follow. FAA presence was confirmed by two fragment ions in the correct ratio, and use of a labeled standard allowed for quantitation by isotope dilution. FAA detection and quantitation limits were 0.4 µg/L and 2 µg/L, respectively. Four different drinking water utilities provided water samples from varying locations across the U.S. All the water samples were fortified with FAA and tested to evaluate analyte stability and the robustness of the method.

7.
Water Environ Res ; 89(1): 24-31, 2017 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-28236826

RESUMO

This study investigated the effect of ultraviolet light-emitting diodes (UVLEDs) coupled with hydrogen peroxide as an advanced oxidation process (AOP) for the degradation of two test chemicals. Brilliant Blue FCF consistently exhibited greater degradation than tartrazine, with 83% degradation after 300 minutes at the 100% duty cycle compared with only 17% degradation of tartrazine under the same conditions. These differences are attributable to the structural properties of the compounds. Duty cycle was positively correlated with the first-order rate constants (k) for both chemicals but, interestingly, negatively correlated with the normalized first-order rate constants (k/duty cycle). Synergistic effects of both hydraulic mixing and LED duty cycle were manifested as novel oscillations in the effluent contaminant concentration. Further, LED output and efficiency were dependent upon duty cycle and less efficient over time perhaps due to heating effects on semiconductor performance.


Assuntos
Benzenossulfonatos/química , Corantes/química , Peróxido de Hidrogênio/química , Tartrazina/química , Raios Ultravioleta , Poluentes Químicos da Água/química , Benzenossulfonatos/efeitos da radiação , Catálise , Corantes/efeitos da radiação , Oxirredução , Fotólise , Tartrazina/efeitos da radiação , Poluentes Químicos da Água/efeitos da radiação
8.
Build Environ ; 108: 135-142, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-31320779

RESUMO

Detecting organophosphates in indoor settings can greatly benefit from more efficient and faster methods of surveying large surface areas than conventional approaches, which sample small surface areas followed by extraction and analysis. This study examined a standoff detection technique utilizing hyperspectral imaging for analysis of building materials in near-real time. In this proof-of-concept study, dimethyl methylphosphonate (DMMP) was applied to stainless steel and laminate coupons and spectra were collected during active illumination. Absorbance bands at approximately 1275 cm-1 and 1050 cm-1 were associated with phosphorus-oxygen double bond (P=O) and phosphorus-oxygen-carbon (P-O-C) bond stretches of DMMP, respectively. The magnitude of these bands increased linearly (r2 = 0.93) with DMMP across the full absorbance spectrum, between ν1 = 877 cm-1 to ν2 = 1262 cm-1. Comparisons between bare and contaminated surfaces on stainless steel using the spectral contrast angle technique indicated that the bare samples showed no sign of contamination, with large uniformly distributed contrast angles of 45°-55°, while the contaminated samples had smaller spectral contact angles of < 20° in the contaminated region and > 40° in the uncontaminated region. The laminate contaminated region exhibited contact angles of < 25°. To the best of our knowledge, this is the first report to demonstrate that hyperspectral imaging can be used to detect DMMP on building materials, with detection levels similar to concentrations expected for some organophosphate deposition scenarios.

9.
Water Sci Technol ; 71(9): 1375-81, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25945855

RESUMO

Ultraviolet (UV) light emitting diodes (LEDs) may be a viable option as a UV light source for advanced oxidation processes (AOPs) utilizing photocatalysts or oxidizing agents such as hydrogen peroxide. The effect of UV-LED duty cycle, expressed as the percentage of time the LED is powered, was investigated in an AOP with hydrogen peroxide, using methylene blue (MB) to assess contaminant degradation. The UV-LED AOP degraded the MB at all duty cycles. However, adsorption of MB onto the LED emitting surface caused a linear decline in reactor performance over time. With regard to the effect of duty cycle, the observed rate constant of MB degradation, after being adjusted to account for the duty cycle, was greater for 5 and 10% duty cycles than higher duty cycles, providing a value approximately 160% higher at 5% duty cycle than continuous operation. This increase in adjusted rate constant at low duty cycles, as well as contaminant fouling of the LED surface, may impact design and operational considerations for pulsed UV-LED AOP systems.


Assuntos
Peróxido de Hidrogênio/química , Fotólise , Raios Ultravioleta , Eliminação de Resíduos Líquidos/métodos , Poluentes Químicos da Água/química , Cinética , Azul de Metileno , Oxidantes , Oxirredução
10.
Anal Chem ; 87(2): 1034-41, 2015 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-25495198

RESUMO

The persistence of chemical warfare nerve agent degradation analytes on surfaces is important, from indicating the presence of nerve agent on a surface to guiding environmental restoration of a site after a release. Persistence was investigated for several chemical warfare nerve agent degradation analytes on indoor surfaces and presents an approach for wipe sampling of surfaces, followed by wipe extraction and liquid chromatography-tandem mass spectrometry detection. Commercially available wipe materials were investigated to determine optimal wipe recoveries. Tested surfaces included porous/permeable (vinyl tile, painted drywall, and wood) and largely nonporous/impermeable (laminate, galvanized steel, and glass) surfaces. Wipe extracts were analyzed by ultrahigh performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). UPLC provides a separation of targeted degradation analytes in addition to being nearly four times faster than high-performance liquid chromatography, allowing for greater throughput after a large-scale contamination incident and subsequent remediation events. Percent recoveries from nonporous/impermeable surfaces were 60-103% for isopropyl methylphosphonate (IMPA), GB degradate; 61-91% for ethyl methylphosphonate (EMPA), VX degradate; and 60-98% for pinacolyl methylphosphonate (PMPA), GD degradate. Recovery efficiencies for methyl phosphonate (MPA), nerve agent degradate, and ethylhydrogen dimethylphosphonate (EHDMAP), GA degradate, were lower, perhaps due to matrix effects. Diisopropyl methylphosphonate, GB impurity, was not recovered from surfaces. The resulting detection limits for wipe extracts were 0.065 ng/cm(2) for IMPA, 0.079 ng/cm(2) for MPA, 0.040 ng/cm(2) for EMPA, 0.078 ng/cm(2) for EHDMAP, and 0.013 ng/cm(2) for PMPA. The data indicate that laboratories may hold wipe samples for up to 30 days prior to analysis. Target analytes were observed to persist on surfaces for at least 6 weeks.


Assuntos
Substâncias para a Guerra Química/análise , Cromatografia Líquida de Alta Pressão/métodos , Resíduos de Drogas/análise , Poluentes Ambientais/análise , Extração em Fase Sólida/métodos , Espectrometria de Massas em Tandem/métodos , Monitoramento Ambiental , Humanos , Compostos Organofosforados/análise , Manejo de Espécimes
11.
Water Res ; 57: 127-39, 2014 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-24709533

RESUMO

This study examined the ability of activated sludge (AS) to sorb and biodegrade ethylmethylphosphonic acid (EMPA) and malathion, a degradation product and surrogate, respectively, for an organophosphate chemical warfare agent. Sorption equilibrium isotherm experiments indicate that sorption of EMPA and malathion to AS is negligible. EMPA at a concentration of 1 mg L(-1) degraded by approximately 30% with apparent first-order kinetics, possibly via co-metabolism from nitrification. Heterotrophic bacteria and abiotic mechanisms, however, are largely responsible for malathion degradation also with apparent first-order kinetics. EMPA did not inhibit chemical oxygen demand (COD) oxidation or nitrification activity, although malathion did appear to induce a stress response resulting in inhibition of COD oxidation. The study also included a 30-day experiment in which malathion, at a concentration of 5 mg L(-1), was repeatedly fed to AS in bench-scale sequencing batch reactors (SBRs) operating at different solids retention times (SRTs). Peak malathion concentrations occurred at day 4.5, with the longer SRTs yielding greater peak malathion concentrations. The AS reduced the malathion concentrations to nearly zero by day 10 for all SRTs, even when the malathion concentration in the influent increased to 20.8 mg L(-1). The data suggest a biodegradation pathway for malathion involving an oxygenase. Phylogenetic analyses revealed that all samples had an abundance of Zoogloea, though there was greater bacterial diversity in the SBR with the SRT of 50 days. The SBR with an SRT of 9.5 days had an apparent reduction in the diversity of the bacterial community.


Assuntos
Bactérias/metabolismo , Malation/metabolismo , Microbiota , Organofosfonatos/metabolismo , Esgotos/microbiologia , Poluentes Químicos da Água/metabolismo , Absorção Fisico-Química , Bactérias/classificação , Biodegradação Ambiental , Reatores Biológicos/microbiologia , Cromatografia Líquida de Alta Pressão , Monitoramento Ambiental , Inseticidas/metabolismo , Espectrometria de Massas em Tandem
12.
Environ Int ; 72: 90-7, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24568927

RESUMO

Catastrophic incidents can generate a large number of samples of analytically diverse types, including forensic, clinical, environmental, food, and others. Environmental samples include water, wastewater, soil, air, urban building and infrastructure materials, and surface residue. Such samples may arise not only from contamination from the incident but also from the multitude of activities surrounding the response to the incident, including decontamination. This document summarizes a range of activities to help build laboratory capability in preparation for sample analysis following a catastrophic incident, including selection and development of fit-for-purpose analytical methods for chemical, biological, and radiological contaminants. Fit-for-purpose methods are those which have been selected to meet project specific data quality objectives. For example, methods could be fit for screening contamination in the early phases of investigation of contamination incidents because they are rapid and easily implemented, but those same methods may not be fit for the purpose of remediating the environment to acceptable levels when a more sensitive method is required. While the exact data quality objectives defining fitness-for-purpose can vary with each incident, a governing principle of the method selection and development process for environmental remediation and recovery is based on achieving high throughput while maintaining high quality analytical results. This paper illustrates the result of applying this principle, in the form of a compendium of analytical methods for contaminants of interest. The compendium is based on experience with actual incidents, where appropriate and available. This paper also discusses efforts aimed at adaptation of existing methods to increase fitness-for-purpose and development of innovative methods when necessary. The contaminants of interest are primarily those potentially released through catastrophes resulting from malicious activity. However, the same techniques discussed could also have application to catastrophes resulting from other incidents, such as natural disasters or industrial accidents. Further, the high sample throughput enabled by the techniques discussed could be employed for conventional environmental studies and compliance monitoring, potentially decreasing costs and/or increasing the quantity of data available to decision-makers.


Assuntos
Técnicas de Química Analítica/métodos , Contenção de Riscos Biológicos/métodos , Desastres , Poluição Ambiental/análise , Laboratórios/estatística & dados numéricos , Recuperação e Remediação Ambiental , Laboratórios/normas , Controle de Qualidade , Terrorismo
13.
J Chromatogr A ; 1270: 72-9, 2012 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-23218189

RESUMO

Degradation products arising from nitrogen mustard chemical warfare agent were deposited on common urban surfaces and determined via surface wiping, wipe extraction, and liquid chromatography­tandem mass spectrometry detection. Wipes investigated included cotton gauze, glass fiber filter, non-woven polyester fiber and filter paper, and surfaces included several porous (vinyl tile, painted drywall, wood) and mostly non-porous (laminate, galvanized steel, glass) surfaces. Wipe extracts were analyzed by ultra-high pressure liquid chromatography­tandem mass spectrometry (UPLC­MS/MS) and compared with high performance liquid chromatography­tandem mass spectrometry (HPLC­MS/MS) results. An evaluation of both techniques suggests UPLC­MS/MS provides a quick and sensitive analysis of targeted degradation products in addition to being nearly four times faster than a single HPLC run, allowing for greater throughput during a wide-spread release concerning large-scale contamination and subsequent remediation events. Based on the overall performance of all tested wipes, filter paper wipes were selected over other wipes because they did not contain interferences or native species (TEA and DEA) associated with the target analytes, resulting in high percent recoveries and low background levels during sample analysis. Other wipes, including cotton gauze, would require a pre-cleaning step due to the presence of large quantities of native species or interferences of the targeted analytes. Percent recoveries obtained from a laminate surface were 47­99% for all nitrogen mustard degradation products. The resulting detection limits achieved from wipes were 0.2 ng/cm(2) for triethanolamine (TEA), 0.03 ng/cm(2) for N-ethyldiethanolamine (EDEA), 0.1 ng/cm(2) for N-methyldiethanolamine (MDEA), and 0.1 ng/cm(2) for diethanolamine (DEA).


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Poluentes Ambientais/análise , Mecloretamina/análise , Espectrometria de Massas em Tandem/métodos , Monitoramento Ambiental/instrumentação , Monitoramento Ambiental/métodos , Poluentes Ambientais/química , Etanolaminas/análise , Etanolaminas/química , Limite de Detecção , Mecloretamina/química , Reprodutibilidade dos Testes
14.
Inorg Chem ; 47(4): 1258-60, 2008 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-18211000

RESUMO

Depending on the conditions, the reaction of K 2PtCl 4 with 1,3-bis( N-pyrazolyl)benzene (bpzphH) yields either Pt(bpzph)Cl, [Pt(mu-bpzph)Cl] 3, or a mixture of these products. In the case of the C 3-symmetric trimer, each bpzph (-) ligand is bidentate with the metal bonded to a pyrazolyl group and to the phenyl group at the 6 position; the remaining pyrazolyl group bridges to an adjacent platinum center. The crystal structure confirms that each complex is chiral with an unusually deep (approximately 8 A) intramolecular cavity; enantiomeric pairs of trimers encapsulate the diethyl ether solvate. NMR studies establish that the trimer exhibits excellent thermal and kinetic stability. Substitution of the chloride ligands provides a strategy for elaborating the macrocycle.

15.
Inorg Chem ; 43(8): 2548-55, 2004 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-15074972

RESUMO

Four platinum(II) cationic complexes were prepared with the mer-coordinating tridentate ligands 2,6-bis(N-pyrazolyl)pyridine (bpp) and 2,6-bis(3,5-dimethyl-N-pyrazolyl)pyridine (bdmpp): [Pt(bpp)Cl]Cl.H(2)O; [Pt(bdmpp)Cl]Cl.H(2)O; [Pt(bpp)(Ph)](PF(6)); [Pt(bdmpp)(Ph)](PF(6)). The complexes were characterized by (1)H NMR spectroscopy, elemental analysis, and mass spectrometry, and the structures of the bpp derivatives were determined by X-ray crystallography. [Pt(bpp)Cl]Cl.2H(2)O: monoclinic, P2(1)/n, a = 11.3218(5) A, b = 6.7716(3) A, c = 20.6501(6) A, beta = 105.883(2) degrees, V = 1522.73(11) A(3), Z = 4. The square planar cations stack in a head-to-tail fashion to form a linear chain structure with alternating Pt...Pt distances of 3.39 and 3.41 A. [Pt(bpp)(Ph)](PF(6)).CH(3)CN: triclinic, P, a = 8.3620(3) A, b = 10.7185(4) A, c = 13.4273(5) A, alpha = 96.057(1) degrees, beta = 104.175(1) degrees, gamma = 110.046(1) degrees, V = 1072.16(7) A(3), Z = 2. Cyclic voltammograms indicate all four complexes undergo irreversible reductions between -1.0 and -1.3 V vs Ag/AgCl (0.1 M TBAPF(6)/CH(3)CN), attributable to ligand- and/or metal-centered processes. By comparison to related 2,2':6',2' '-terpyridine complexes, the electrochemical and UV-visible absorption data are consistent with bpp being both a weaker sigma-donor and pi-acceptor than terpyridine. Solid samples of [Pt(bpp)(Ph)](PF(6)) at 77 K exhibit a remarkably intense, narrow emission centered at 655 nm, whereas the other three complexes exhibit only very weak emission.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...