Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Immunother Cancer ; 10(1)2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35017153

RESUMO

BACKGROUND: Despite extensive clinical use, the mechanisms that lead to therapeutic resistance to anti-programmed cell-death (PD)-1 monoclonal antibodies (mAbs) remain elusive. Here, we sought to determine how interactions between the Fc region of anti-PD-1 mAbs and Fcγ receptors (FcγRs) affect therapeutic activity and how these are impacted by the immune environment. METHODS: Mouse and human anti-PD-1 mAbs with different Fc binding profiles were generated and characterized in vitro. The ability of these mAbs to elicit T-cell responses in vivo was first assessed in a vaccination setting using the model antigen ovalbumin. The antitumor activity of anti-PD-1 mAbs was investigated in the context of immune 'hot' MC38 versus 'cold' neuroblastoma tumor models, and flow cytometry performed to assess immune infiltration. RESULTS: Engagement of activating FcγRs by anti-PD-1 mAbs led to depletion of activated CD8 T cells in vitro and in vivo, abrogating therapeutic activity. Importantly, the extent of this Fc-mediated modulation was determined by the surrounding immune environment. Low FcγR-engaging mouse anti-PD-1 isotypes, which are frequently used as surrogates for human mAbs, were unable to expand ovalbumin-reactive CD8 T cells, in contrast to Fc-null mAbs. These results were recapitulated in mice expressing human FcγRs, in which clinically relevant hIgG4 anti-PD-1 led to reduced endogenous expansion of CD8 T cells compared with its engineered Fc-null counterpart. In the context of an immunologically 'hot' tumor however, both low-engaging and Fc-null mAbs induced long-term antitumor immunity in MC38-bearing mice. Finally, a similar anti-PD-1 isotype hierarchy was demonstrated in the less responsive 'cold' 9464D neuroblastoma model, where the most effective mAbs were able to delay tumor growth but could not induce long-term protection. CONCLUSIONS: Our data collectively support a critical role for Fc:FcγR interactions in inhibiting immune responses to both mouse and human anti-PD-1 mAbs, and highlight the context-dependent effect that anti-PD-1 mAb isotypes can have on T-cell responses. We propose that engineering of Fc-null anti-PD-1 mAbs would prevent FcγR-mediated resistance in vivo and allow maximal T-cell stimulation independent of the immunological environment.


Assuntos
Anticorpos Monoclonais/uso terapêutico , Inibidores de Checkpoint Imunológico/uso terapêutico , Imunoterapia/métodos , Neoplasias/tratamento farmacológico , Receptor de Morte Celular Programada 1/imunologia , Animais , Anticorpos Monoclonais/farmacologia , Modelos Animais de Doenças , Humanos , Inibidores de Checkpoint Imunológico/farmacologia , Camundongos , Microambiente Tumoral
2.
J Immunother Cancer ; 8(2)2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33428585

RESUMO

BACKGROUND: Previous data suggests that anti-OX40 mAb can elicit anti-tumor effects in mice through deletion of Tregs. However, OX40 also has powerful costimulatory effects on T cells which could evoke therapeutic responses. Human trials with anti-OX40 antibodies have shown that these entities are well tolerated but to date have delivered disappointing clinical responses, indicating that the rules for the optimal use of anti-human OX40 (hOX40) antibodies is not yet fully understood. Changes to timing and dosages may lead to improved outcomes; however, here we focus on addressing the role of agonism versus depleting activity in determining therapeutic outcomes. We investigated a novel panel of anti-hOX40 mAb to understand how these reagents and mechanisms may be optimized for therapeutic benefit. METHODS: This study examines the binding activity and in vitro activity of a panel of anti-hOX40 antibodies. They were further evaluated in several in vivo models to address how isotype and epitope determine mechanism of action and efficacy of anti-hOX40 mAb. RESULTS: Binding analysis revealed the antibodies to be high affinity, with epitopes spanning all four cysteine-rich domains of the OX40 extracellular domain. In vivo analysis showed that their activities relate directly to two key properties: (1) isotype-with mIgG1 mAb evoking receptor agonism and CD8+ T-cell expansion and mIgG2a mAb evoking deletion of Treg and (2) epitope-with membrane-proximal mAb delivering more powerful agonism. Intriguingly, both isotypes acted therapeutically in tumor models by engaging these different mechanisms. CONCLUSION: These findings highlight the significant impact of isotype and epitope on the modulation of anti-hOX40 mAb therapy, and indicate that CD8+ T-cell expansion or Treg depletion might be preferred according to the composition of different tumors. As many of the current clinical trials using OX40 antibodies are now using combination therapies, this understanding of how to manipulate therapeutic activity will be vital in directing new combinations that are more likely to improve efficacy and clinical outcomes.


Assuntos
Isotipos de Imunoglobulinas/imunologia , Imunoterapia/métodos , Receptores OX40/imunologia , Animais , Feminino , Humanos , Camundongos
3.
Immunity ; 49(5): 958-970.e7, 2018 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-30446386

RESUMO

The costimulatory receptor 4-1BB is expressed on activated immune cells, including activated T cells. Antibodies targeting 4-1BB enhance the proliferation and survival of antigen-stimulated T cells in vitro and promote CD8 T cell-dependent anti-tumor immunity in pre-clinical cancer models. We found that T regulatory (Treg) cells infiltrating human or murine tumors expressed high amounts of 4-1BB. Intra-tumoral Treg cells were preferentially depleted by anti-4-1BB mAbs in vivo. Anti-4-1BB mAbs also promoted effector T cell agonism to promote tumor rejection. These distinct mechanisms were competitive and dependent on antibody isotype and FcγR availability. Administration of anti-4-1BB IgG2a, which preferentially depletes Treg cells, followed by either agonistic anti-4-1BB IgG1 or anti-PD-1 mAb augmented anti-tumor responses in multiple solid tumor models. An antibody engineered to optimize both FcγR-dependent Treg cell depleting capacity and FcγR-independent agonism delivered enhanced anti-tumor therapy. These insights into the effector mechanisms of anti-4-1BB mAbs lay the groundwork for translation into the clinic.


Assuntos
Anticorpos Monoclonais/farmacologia , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Imunomodulação/efeitos dos fármacos , Neoplasias/imunologia , Neoplasias/metabolismo , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo , Membro 9 da Superfamília de Receptores de Fatores de Necrose Tumoral/antagonistas & inibidores , Animais , Expressão Gênica , Humanos , Imunoglobulina G/farmacologia , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/metabolismo , Camundongos , Camundongos Knockout , Neoplasias/genética , Membro 9 da Superfamília de Receptores de Fatores de Necrose Tumoral/genética , Membro 9 da Superfamília de Receptores de Fatores de Necrose Tumoral/metabolismo
4.
Sci Rep ; 8(1): 2278, 2018 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-29396470

RESUMO

CD134 (OX40) is a member of the tumour necrosis factor receptor superfamily (TNFRSF). It acts as a costimulatory receptor on T cells, but its role on NK cells is poorly understood. CD137, another TNFRSF member has been shown to enhance the anti-tumour activity of NK cells in various malignancies. Here, we examine the expression and function of CD134 on human and mouse NK cells in B-cell lymphoma. CD134 was transiently upregulated upon activation of NK cells in both species. In contrast to CD137, induction of CD134 on human NK cells was dependent on close proximity to, or cell-to-cell contact with, monocytes or T cells. Stimulation with an agonistic anti-CD134 mAb but not CD134 ligand, increased IFNγ production and cytotoxicity of human NK cells, but this was dependent on simultaneous antibody:Fcγ receptor binding. In complementary murine studies, intravenous inoculation with BCL1 lymphoma into immunocompetent syngeneic mice resulted in transient upregulation of CD134 on NK cells. Combination treatment with anti-CD20 and anti-CD134 mAb produced a synergistic effect with durable remissions. This therapeutic benefit was abrogated by NK cell depletion and in Fcγ chain -/- mice. Hence, anti-CD134 agonists may enhance NK-mediated anti-tumour activity in an Fcγ receptor dependent fashion.


Assuntos
Anticorpos/metabolismo , Células Matadoras Naturais/imunologia , Linfoma de Células B/imunologia , Receptores OX40/metabolismo , Animais , Anticorpos Monoclonais/administração & dosagem , Adesão Celular , Células Cultivadas , Citotoxicidade Imunológica , Perfilação da Expressão Gênica , Humanos , Interferon gama/metabolismo , Camundongos , Monócitos/imunologia , Transplante de Neoplasias , Receptores OX40/análise , Linfócitos T/imunologia , Resultado do Tratamento
5.
Proc Natl Acad Sci U S A ; 114(7): E1178-E1187, 2017 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-28137869

RESUMO

Memory CD8+ T cells confer long-term immunity against tumors, and anticancer vaccines therefore should maximize their generation. Multiple memory CD8+ T-cell subsets with distinct functional and homing characteristics exist, but the signaling pathways that regulate their development are ill defined. Here we examined the role of the serine/threonine kinase Akt in the generation of protective immunity by CD8+ T cells. Akt is known to be activated by the T-cell antigen receptor and the cytokine IL-2, but its role in T-cell immunity in vivo has not been explored. Using CD8+ T cells from pdk1K465E/K465E knockin mice, we found that decreased Akt activity inhibited the survival of T cells during the effector-to-memory cell transition and abolished their differentiation into C-X-C chemokine receptor 3 (CXCR3)loCD43lo effector-like memory cells. Consequently, antitumor immunity by CD8+ T cells that display defective Akt signaling was substantially diminished during the memory phase. Reduced memory T-cell survival and altered memory cell differentiation were associated with up-regulation of the proapoptotic protein Bim and the T-box transcription factor eomesodermin, respectively. These findings suggest an important role for effector-like memory CD8+ T cells in tumor immune surveillance and identify Akt as a key signaling node in the development of protective memory CD8+ T-cell responses.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Memória Imunológica/imunologia , Vigilância Imunológica/imunologia , Neoplasias Experimentais/imunologia , Proteínas Proto-Oncogênicas c-akt/imunologia , Animais , Sítios de Ligação/genética , Linfócitos T CD8-Positivos/metabolismo , Receptor 1 de Quimiocina CX3C/imunologia , Receptor 1 de Quimiocina CX3C/metabolismo , Linhagem Celular Tumoral , Vigilância Imunológica/genética , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mutação , Neoplasias Experimentais/genética , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/imunologia , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Piruvato Desidrogenase Quinase de Transferência de Acetil , Receptores de Antígenos de Linfócitos T/imunologia , Receptores de Antígenos de Linfócitos T/metabolismo , Receptores CXCR3/imunologia , Receptores CXCR3/metabolismo , Transdução de Sinais/imunologia
6.
Mol Immunol ; 83: 13-22, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28092803

RESUMO

OX40 is a type 1 transmembrane glycoprotein, reported nearly 30 years ago as a cell surface antigen expressed on activated T cells. Since its discovery, it has been validated as a bone fide costimulatory molecule for T cells and member of the TNF receptor family. However, many questions still remain relating to its function on different T cell sub-sets and with recent interest in its utility as a target for antibody-mediated immunotherapy, there is a growing need to gain a better understanding of its biology. Here, we review the expression pattern of OX40 and its ligand, discuss the structure of the receptor:ligand interaction, the downstream signalling it can elicit, its function on different T cell subsets and how antibodies might engage with it to provide effective immunotherapy.


Assuntos
Ligante OX40/imunologia , Receptores OX40/imunologia , Linfócitos T/imunologia , Animais , Humanos , Ativação Linfocitária/imunologia , Relação Estrutura-Atividade
7.
Cancer Cell ; 27(1): 138-48, 2015 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-25500122

RESUMO

Monoclonal antibody (mAb) drugs that stimulate antitumor immunity are transforming cancer treatment but require optimization for maximum clinical impact. Here, we show that, unlike other immunoglobulin isotypes, human IgG2 (h2) imparts FcγR-independent agonistic activity to immune-stimulatory mAbs such as anti-CD40, -4-1BB, and -CD28. Activity is provided by a subfraction of h2, h2B, that is structurally constrained due its unique arrangement of hinge region disulfide bonds. Agonistic activity can be transferred from h2 to h1 by swapping their hinge and CH1 domains, and substitution of key hinge and CH1 cysteines generates homogenous h2 variants with distinct agonistic properties. This provides the exciting opportunity to engineer clinical reagents with defined therapeutic activity regardless of FcγR expression levels in the local microenvironment.


Assuntos
Anticorpos Monoclonais/química , Anticorpos Monoclonais/uso terapêutico , Imunoglobulina G/química , Imunoglobulina G/uso terapêutico , Receptores de IgG/imunologia , Timoma/prevenção & controle , Neoplasias do Timo/prevenção & controle , Animais , Anticorpos Monoclonais/imunologia , Antígenos CD28/imunologia , Antígenos CD40/imunologia , Células Cultivadas , Humanos , Imunoglobulina G/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Timoma/tratamento farmacológico , Timoma/imunologia , Neoplasias do Timo/tratamento farmacológico , Neoplasias do Timo/imunologia , Membro 9 da Superfamília de Receptores de Fatores de Necrose Tumoral/imunologia , Vacinação/métodos
8.
J Immunol ; 193(1): 244-51, 2014 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-24860188

RESUMO

The factors that determine differentiation of naive CD8 T cells into memory cells are not well understood. A greater understanding of how memory cells are generated will inform of ways to improve vaccination strategies. In this study, we analyzed the CD8 T cell response elicited by two experimental vaccines comprising a peptide/protein Ag and an agonist that delivers a costimulatory signal via CD27 or 4-1BB. Both agonists increased expansion of Ag-specific CD8 T cells compared with Ag alone. However, their capacity to stimulate differentiation into effector and memory cells differed. CD27 agonists promoted increased expression of perforin and the generation of short-lived memory cells, whereas stimulation with 4-1BB agonists favored generation of stable memory. The memory-promoting effects of 4-1BB were independent of CD4 T cells and were the result of programing within the first 2 d of priming. Consistent with this conclusion, CD27 and 4-1BB-stimulated CD8 T cells expressed disparate amounts of IL-2, IFN-γ, CD25, CD71, and Gp49b as early as 3 d after in vivo activation. In addition, memory CD8 T cells, generated through priming with CD27 agonists, proliferated more extensively than did 4-1BB-generated memory cells, but these cells failed to persist. These data demonstrate a previously unanticipated link between the rates of homeostatic proliferation and memory cell attrition. Our study highlights a role for these receptors in skewing CD8 T cell differentiation into effector and memory cells and provides an approach to optimize vaccines that elicit CD8 T cell responses.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Imunização , Memória Imunológica , Peptídeos/farmacologia , Membro 7 da Superfamília de Receptores de Fatores de Necrose Tumoral/imunologia , Membro 9 da Superfamília de Receptores de Fatores de Necrose Tumoral/imunologia , Animais , Antígenos/farmacologia , Antígenos CD/genética , Antígenos CD/imunologia , Linfócitos T CD8-Positivos/citologia , Interferon gama/genética , Interferon gama/imunologia , Interleucina-2/genética , Interleucina-2/imunologia , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/imunologia , Camundongos , Camundongos Transgênicos , Receptores Imunológicos/genética , Receptores Imunológicos/imunologia , Receptores da Transferrina/genética , Receptores da Transferrina/imunologia , Membro 7 da Superfamília de Receptores de Fatores de Necrose Tumoral/genética , Membro 9 da Superfamília de Receptores de Fatores de Necrose Tumoral/agonistas , Membro 9 da Superfamília de Receptores de Fatores de Necrose Tumoral/genética
9.
Eur J Immunol ; 43(12): 3314-23, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24002868

RESUMO

Naive T cells require signals from multiple costimulatory receptors to acquire full effector function and differentiate to long-lived memory cells. The costimulatory receptor, CD27, is essential for optimal T-cell priming and memory differentiation in a variety of settings, although whether CD27 is similarly required during memory CD8(+) T-cell reactivation remains controversial. We have used OVA and anti-CD40 to establish a memory CD8(+) T-cell population and report here that their secondary expansion, driven by peptide and anti-CD40, polyI:C, or LPS, requires CD27. Furthermore, antigenic peptide and a soluble form of the CD27 ligand, CD70 (soluble recombinant CD70 (sCD70)), is sufficient for secondary memory CD8(+) T-cell accumulation at multiple anatomical sites, dependent on CD80/86. Prior to boost, resting effector- and central-memory CD8(+) T cells both expressed CD27 with greater expression on central memory cells. Nonetheless, both populations upregulated CD27 after TCR engagement and accumulated in proportion after boosting with Ag and sCD70. Mechanistically, sCD70 increased the frequency of divided and cytolytic memory T cells, conferred resistance to apoptosis and enabled retardation of tumor growth in vivo. These data demonstrate the central role played by CD27/70 during secondary CD8(+) T-cell activation to a peptide Ag, and identify sCD70 as an immunotherapeutic adjuvant for antitumor immunity.


Assuntos
Antígenos/imunologia , Linfócitos T CD8-Positivos/imunologia , Memória Imunológica/fisiologia , Ativação Linfocitária/imunologia , Peptídeos/imunologia , Membro 7 da Superfamília de Receptores de Fatores de Necrose Tumoral/imunologia , Adjuvantes Imunológicos , Animais , Anticorpos/imunologia , Anticorpos/farmacologia , Ligante CD27/imunologia , Ligante CD27/farmacologia , Antígenos CD40/imunologia , Linfócitos T CD8-Positivos/citologia , Imunoterapia/métodos , Indutores de Interferon/farmacocinética , Indutores de Interferon/farmacologia , Lipopolissacarídeos/farmacologia , Ativação Linfocitária/efeitos dos fármacos , Ativação Linfocitária/genética , Camundongos , Camundongos Knockout , Neoplasias/imunologia , Neoplasias/patologia , Neoplasias/terapia , Poli I-C/farmacologia , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/imunologia , Membro 7 da Superfamília de Receptores de Fatores de Necrose Tumoral/genética
10.
Eur J Immunol ; 41(9): 2606-11, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21688261

RESUMO

TNFRSF25 is a member of the TNF receptor superfamily (TNFRSF) that binds to the TNF-like protein TL1A. Although recent studies have demonstrated a role for TNFRSF25 in regulating CD4(+) T-cell responses, it remains to be determined if TNFRSF25 functions as a costimulatory receptor for CD8(+) T cells. Here, we demonstrate that ectopic expression of TL1A on mouse plasmacytomas promotes elimination of tumor cells in a CD8(+) T-cell-dependent manner and renders mice immune to a subsequent challenge with tumor cells. To gain further insight into the role of TNFRSF25 in CD8(+) T-cell responses, we analyzed the effect of TNFRSF25 triggering on OT-I TCR transgenic T cells. We demonstrate that TNFRSF25 triggering in vivo with soluble TL1A promotes the proliferation and accumulation of antigen-specific CD8(+) T cells as well as their differentiation into CTLs. Furthermore, we show that TNFRSF25 also functions as a costimulatory receptor for memory CD8(+) T cells. Thus, TNFRSF25 triggering enhances the secondary expansion of endogenous antigen-specific memory CD8(+) T cells. Our data suggest that TNFRSF25 agonists, such as soluble TL1A, could potentially be used to enhance the immunogenicity of vaccines that aim to elicit human anti-tumor CD8(+) T cells.


Assuntos
Linfócitos T CD8-Positivos/metabolismo , Vacinas Anticâncer , Plasmocitoma/metabolismo , Membro 25 de Receptores de Fatores de Necrose Tumoral/metabolismo , Membro 15 da Superfamília de Ligantes de Fatores de Necrose Tumoral/metabolismo , Animais , Antígenos de Neoplasias/imunologia , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/patologia , Linhagem Celular Tumoral , Proliferação de Células , Citotoxicidade Imunológica , Humanos , Memória Imunológica , Ativação Linfocitária , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Plasmocitoma/imunologia , Plasmocitoma/patologia , Membro 25 de Receptores de Fatores de Necrose Tumoral/imunologia , Transgenes/genética , Membro 15 da Superfamília de Ligantes de Fatores de Necrose Tumoral/genética
11.
J Immunol ; 185(2): 1082-92, 2010 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-20554967

RESUMO

The ternary complex factors (TCFs; SAP-1, Elk-1, and Net) are serum response factor cofactors that share many functional properties and are coexpressed in many tissues. SAP-1, the predominant thymus TCF, is required for thymocyte positive selection. In this study, we assessed whether the different TCFs are functionally equivalent. Elk-1 deletion, but not the hypomorphic Net(delta) mutation, exacerbated the SAP-1 positive selection phenotype, but triply deficient thymocytes were no more defective than SAP-1(-/-) Elk-1(-/-) cells. Inactivation of the other TCFs did not affect SAP-1-independent processes, including beta-selection, regulatory T cell selection, and negative selection, although reduced marginal zone B cells were observed in SAP-1(-/-) Elk-1(-/-) animals. Ectopic expression of Elk-1, but not Net, rescued positive selection of SAP-1(-/-) thymocytes; thus, SAP-1 and Elk-1 are functionally equivalent in this system, and the SAP-1 null selection phenotype reflects only its high expression in the thymus. Array analysis of TCR-stimulated double-positive cells identified SAP-1-dependent inducible genes whose transcription was further impaired in SAP-1(-/-) Elk-1(-/-) cells; thus, these genes, which include Egr-1 and Egr-2, represent candidate mediators of positive selection. Chromatin immunoprecipitation revealed subtly different promoter targeting between the different TCFs. Ectopic expression of Egr-1 restored positive selection in SAP-1 null thymocytes, establishing it (and possibly other Egr family members) as the major effector for ERK-SAP-1 signaling in thymocyte positive selection.


Assuntos
Proteínas Proto-Oncogênicas c-ets/imunologia , Timo/imunologia , Proteínas Elk-1 do Domínio ets/imunologia , Proteínas Elk-4 do Domínio ets/imunologia , Animais , Diferenciação Celular/genética , Diferenciação Celular/imunologia , Células Cultivadas , Imunoprecipitação da Cromatina , Feminino , Citometria de Fluxo , Perfilação da Expressão Gênica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Análise de Sequência com Séries de Oligonucleotídeos , Proteínas Proto-Oncogênicas c-ets/genética , Proteínas Proto-Oncogênicas c-ets/metabolismo , Retroviridae/genética , Timo/citologia , Timo/metabolismo , Transdução Genética , Proteínas Elk-1 do Domínio ets/genética , Proteínas Elk-1 do Domínio ets/metabolismo , Proteínas Elk-4 do Domínio ets/genética , Proteínas Elk-4 do Domínio ets/metabolismo
12.
J Immunol ; 179(10): 6836-44, 2007 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-17982074

RESUMO

Regulatory T cells (T(reg)) play an important role in immune regulation. Their development in the thymus requires TCR activation and recognition of peptide-MHC, although the downstream signals controlling commitment to the lineage are unclear. To compare the requirements for positive selection and T(reg) development, we studied knockout and transgenic mice defective in Raf signaling and the ERK effector SRF accessory protein 1 (SAP-1), a member of the ternary complex factor family of Ets domain transcription factors. Although SAP-1 deficient mice display a severe defect in thymocyte positive selection, T(reg) development was unimpaired as assessed by expression of Foxp3 and the activation markers CD25, GITR, CTLA4, and CD103 in the CD4(+) cell population. In contrast, inhibition of Raf signaling by the interfering dominant negative Raf derivative reduced both Foxp3(+) and Foxp3(-) CD4(+) populations. In SAP-1-deficient CD4(+)CD25(+) T(reg) cells, TCR crosslinking efficiently induced ERK activation, but transcriptional induction of the immediate early gene Egr-1 was impaired. Nevertheless, neither deletion of SAP-1 nor expression of a dominant negative Raf derivative affected the ability of CD4(+)CD25(+) T(reg) cells to suppress CD4(+)CD25(-) cell proliferation in vitro. Finally the suppressive activity of CD4(+)CD25(+) T(reg) cells lacking SAP-1 in an in vivo colitis model was not significantly impaired. The signaling requirements for development of T(reg) cells in the thymus are thus distinct from those required for "conventional" T cell positive selection, and ERK signaling to SAP-1 is not required for the suppressive activity of T(reg) cells.


Assuntos
MAP Quinases Reguladas por Sinal Extracelular/imunologia , Transdução de Sinais/imunologia , Linfócitos T Reguladores/imunologia , Timo/imunologia , Proteínas Elk-4 do Domínio ets/imunologia , Quinases raf/imunologia , Animais , Antígenos de Diferenciação , Proliferação de Células , Colite/imunologia , Colite/metabolismo , Colite/patologia , Modelos Animais de Doenças , Proteína 1 de Resposta de Crescimento Precoce/biossíntese , Proteína 1 de Resposta de Crescimento Precoce/genética , Proteína 1 de Resposta de Crescimento Precoce/imunologia , MAP Quinases Reguladas por Sinal Extracelular/genética , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Regulação da Expressão Gênica/imunologia , Camundongos , Camundongos Transgênicos , Transdução de Sinais/genética , Linfócitos T Reguladores/metabolismo , Linfócitos T Reguladores/patologia , Timo/metabolismo , Timo/patologia , Proteínas Elk-4 do Domínio ets/genética , Proteínas Elk-4 do Domínio ets/metabolismo , Quinases raf/genética , Quinases raf/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...