Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pest Manag Sci ; 80(5): 2250-2259, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-36715695

RESUMO

BACKGROUND: Agricultural landscapes provide resources for arthropod pests as well as their natural enemies. To develop integrated pest management (IPM) practices, it is important to understand how spatiotemporal location influences crop colonization and damage severity. We performed a 3-year (2016-2018) field experiment in winter oilseed rape (OSR, Brassica napus) fields in Estonia, where half of the fields were within 500 m of the location of the previous year's winter OSR field and half were outside this zone. We investigated how distance from the previous year's OSR crop influences the infestation and parasitism rates of two of its most important pests: the pollen beetle (Brassicogethes aeneus) and the cabbage seed weevil (Ceutorhynchus obstrictus). RESULTS: When the distance from the previous year's OSR crop was >500 m, we recorded significantly reduced pest pressure by both B. aeneus and C. obstrictus in the study fields. Biocontrol of both pests, provided by parasitic wasps, was high in each study year and commonly not affected by distance. Mean parasitism rates of B. aeneus were >31%, occasionally reaching >70%; for C. obstrictus, mean parasitism was >46%, reaching up to 79%, thereby providing effective biocontrol for both pest species. CONCLUSION: Spatiotemporal separation of OSR fields can reduce pest pressure without resulting in reduced parasitism of OSR pests. This supports a spatiotemporal field separation concept as an effective and sustainable technique for IPM in OSR. © 2023 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Assuntos
Artrópodes , Brassica napus , Besouros , Vespas , Gorgulhos , Animais , Besouros/parasitologia
2.
Pest Manag Sci ; 79(4): 1267-1272, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36514999

RESUMO

Owing to the expanding industry of medical Cannabis, we discuss recent milestones in RNA interference (RNAi)-based crop protection research and development that are transferable to medical Cannabis cultivation. Recent and prospective increases in pest pressure in both indoor and outdoor Cannabis production systems, and the need for effective nonchemical pest control technologies (particularly crucial in the context of cultivating plants for medical purposes), are discussed. We support the idea that developing RNAi tactics towards protection of medical Cannabis could play a major role in maximizing success in this continuously expanding industry. However, there remain critical knowledge gaps, especially with regard to RNA pesticide biosafety from a human toxicological viewpoint, as a result of the medical context of Cannabis product use. Furthermore, efforts are needed to optimize transformation and micropropagation of Cannabis plants, examine cutting edge RNAi techniques for various Cannabis-pest scenarios, and investigate the combined application of RNAi- and biological control tactics in medical Cannabis cultivation. © 2022 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Assuntos
Maconha Medicinal , Humanos , Interferência de RNA , Estudos Prospectivos , Controle de Pragas , RNA de Cadeia Dupla , Produtos Agrícolas
3.
Front Bioeng Biotechnol ; 10: 871651, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35547161

RESUMO

Habitat loss and fragmentation, and the effects of pesticides, contribute to biodiversity losses and unsustainable food production. Given the United Nation's (UN's) declaration of this decade as the UN Decade on Ecosystem Restoration, we advocate combining conservation biocontrol-enhancing practices with the use of RNA interference (RNAi) pesticide technology, the latter demonstrating remarkable target-specificity via double-stranded (ds)RNA's sequence-specific mode of action. This specificity makes dsRNA a biosafe candidate for integration into the global conservation initiative. Our interdisciplinary perspective conforms to the UN's declaration, and is facilitated by the Earth BioGenome Project, an effort valuable to RNAi development given its utility in providing whole-genome sequences, allowing identification of genetic targets in crop pests, and potentially relevant sequences in non-target organisms. Interdisciplinary studies bringing together biocontrol-enhancing techniques and RNAi are needed, and should be examined for various crop‒pest systems to address this global problem.

5.
PeerJ ; 10: e12953, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35256917

RESUMO

Free-living organisms face multiple stressors in their habitats, and habitat quality often affects development and life history traits. Increasing pressures of agricultural intensification have been shown to influence diversity and abundance of insect pollinators, and it may affect their elemental composition as well. We compared reproductive success, body concentration of carbon (C) and nitrogen (N), and C/N ratio, each considered as indicators of stress, in the buff-tailed bumblebee (Bombus terrestris). Bumblebee hives were placed in oilseed rape fields and semi-natural old apple orchards. Flowering season in oilseed rape fields was longer than that in apple orchards. Reproductive output was significantly higher in oilseed rape fields than in apple orchards, while the C/N ratio of queens and workers, an indicator of physiological stress, was lower in apple orchards, where bumblebees had significantly higher body N concentration. We concluded that a more productive habitat, oilseed rape fields, offers bumblebees more opportunities to increase their fitness than a more natural habitat, old apple orchards, which was achieved at the expense of physiological stress, evidenced as a significantly higher C/N ratio observed in bumblebees inhabiting oilseed rape fields.


Assuntos
Brassica napus , Polinização , Humanos , Abelhas , Animais , Insetos , Reprodução , Agricultura , Brassica napus/fisiologia , Estresse Fisiológico
6.
Insects ; 13(1)2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-35055941

RESUMO

Bumblebees are key pollinators in agricultural landscapes. However, little is known about how gut microbial communities respond to anthropogenic changes. We used commercially produced colonies of buff-tailed bumblebees (Bombus terrestris) placed in three habitats. Whole guts (midgut, hindgut, and rectum) of B. terrestris specimens were dissected from the body and analyzed using 16S phylogenetic community analysis. We observed significantly different bacterial community composition between the agricultural landscapes (apple orchards and oilseed rape (Brassica napus) fields) and forest meadows, whereas differences in gut communities between the orchards and oilseed rape fields were nonsignificant. Bee-specific bacterial genera such as Lactobacillus, Snodgrassella, and Gilliamella dominated gut communities of B. terrestris specimens. In contrast, the guts of B. terrestris from forest meadows were dominated by fructose-associated Fructobacillus spp. Bacterial communities of workers were the most diverse. At the same time, those of males and young queens were less diverse, possibly reflecting greater exposure to the colony's inner environment compared to the environment outside the colony, as well as bumblebee age. Our results suggest that habitat quality, exposure to environmental microbes, nectar quality and accessibility, and land use significantly affect gut bacterial composition in B. terrestris.

7.
Front Plant Sci ; 12: 790816, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34950174

RESUMO

Many herbivorous beetles (Order Coleoptera) contribute to serious losses in crop yields and forest trees, and plant biotechnology solutions are being developed with the hope of limiting these losses. Due to the unprecedented target-specificity of double-stranded RNA (dsRNA), and its utility in inducing RNA interference (RNAi) when consumed by target pest species, dsRNA-based plant biotechnology approaches represent the cutting edge of current pesticide research and development. We review dietary RNAi studies in coleopterans and discuss prospects and future directions regarding RNAi-based management of coleopteran plant pests. Herein, we also provide a balanced overview of existing studies in order to provide an accurate re-assessment of dietary RNAi sensitivity in coleopterans, despite the limitations to the existing body of scientific literature. We further discuss impediments to our understanding of RNAi sensitivity in this important insect order and identify critical future directions for research in this area, with an emphasis on using plant biotechnology approaches.

8.
Front Physiol ; 12: 696689, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34721052

RESUMO

Ecological stoichiometry is important for revealing how the composition of chemical elements of organisms is influenced by their physiological functions and ecology. In this study, we investigated the elemental body composition of queens, workers, and males of the bumblebee Bombus terrestris, an important pollinator throughout Eurasia, North America, and northern Africa. Our results showed that body elemental content differs among B. terrestris castes. Young queens and workers had higher body nitrogen concentration than ovipositing queens and males, while castes did not differ significantly in their body carbon concentration. Furthermore, the carbon-to-nitrogen ratio was higher in ovipositing queens and males. We suggest that high body nitrogen concentration and low carbon-to-nitrogen ratio in young queens and workers may be related to their greater amount of flight muscles and flight activities than to their lower stress levels. To disentangle possible effects of stress in the agricultural landscape, further studies are needed to compare the elemental content of bumblebee bodies between natural habitats and areas of high-intensity agriculture.

9.
Commun Biol ; 4(1): 444, 2021 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-33824392

RESUMO

Double-stranded RNAs (dsRNAs) represent a promising class of biosafe insecticidal compounds. We examined the ability to induce RNA interference (RNAi) in the pollen beetle Brassicogethes aeneus via anther feeding, and compared short-term (3 d) to chronic (17 d) feeding of various concentrations of dsRNA targeting αCOP (dsαCOP). In short-term dsαCOP feeding, only the highest concentration resulted in significant reductions in B. aeneus survival; whereas in chronic dsαCOP feeding, all three concentrations resulted in significant mortality. Chronic dsαCOP feeding also resulted in significantly greater mortality compared to short-term feeding of equivalent dsαCOP concentrations. Our results have implications for the economics and development of dsRNA spray approaches for managing crop pests, in that multiple lower-concentration dsRNA spray treatments across crop growth stages may result in greater pest management efficacy, compared to single treatments using higher dsRNA concentrations. Furthermore, our results highlight the need for research into the development of RNAi cultivars for oilseed rape protection, given the enhanced RNAi efficacy resulting from chronic, compared to short-term, dsRNA feeding in B. aeneus.


Assuntos
Besouros/fisiologia , Pólen , Interferência de RNA/fisiologia , RNA de Cadeia Dupla/metabolismo , Ração Animal/análise , Animais , Besouros/genética , Dieta , Comportamento Alimentar
10.
Insects ; 11(11)2020 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-33171797

RESUMO

Spray-induced gene silencing (SIGS) is a potential strategy for agricultural pest management, whereby nucleotide sequence-specific double-stranded RNA (dsRNA) can be sprayed onto a crop; the desired effect being a consumption of dsRNA by the target pest, and subsequent gene silencing-induced mortality. Nucleotide sequence-specificity is the basis for dsRNA's perceived biosafety. A biosafe approach to pollen beetle (Brassicogethes aeneus) management in oilseed rape (Brassica napus) agroecosystems is needed. We examined the potential for SIGS in B. aeneus, via bud feeding, a field-relevant dsRNA exposure route. Oilseed rape buds were uniformly treated with dsRNA designed to target αCOP in B. aeneus. Our model control dsRNA (dsGFP) remained detectable on buds throughout the entire 3 d exposure period. When applied at 5 µg/µL, dsαCOP induced significant αCOP silencing 3 d after dietary exposure to buds treated with this dsαCOP concentration. We also observed a trend of increased αCOP silencing with increasing concentrations of dsαCOP at both 3 and 6 d. Furthermore, we observed a marginally significant and significant reduction in B. aeneus survival at 10 and 15 d, respectively. Our results suggest potential for developing a SIGS approach to B. aeneus management-though further experiments are needed to more fully understand this potential.

11.
PLoS One ; 14(2): e0212456, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30794624

RESUMO

Agricultural practices often involve tank-mixing and co-application of insecticides with fungicides to control crop pests. However, natural methods relying on biological control agents such as hymenopteran parasitoids have been shown to be highly effective in suppressing crop pest populations. The current body of insecticide risk assessment data accounting for fungicide co-application is very small, the present study being the first to examine this in a parasitoid wasp. Through low-dose exposure to dry residues of the neonicotinoid insecticide thiacloprid, we examined its mortal and knockdown effect on Aphelinus abdominalis when co-applied with increasing doses of the fungicide tebuconazole. Both of these acute effects of thiacloprid were synergised (toxicity increased to a greater-than-additive effect) by tebuconazole, resulting in significant mortality from low-dose co-applications of tebuconazole, and significant knockdown even without co-applied tebuconazole, the effect increasing as tebuconazole concentration increased. We show the highly toxic effect that a low dose of thiacloprid imposes on A. abdominalis populations, and a synergistic toxicity when co-applied with low doses of tebuconazole. Our work suggests a need for updating pesticide risk assessment methods, accounting for pesticide mixtures, in order to make these risk assessments more field relevant.


Assuntos
Neonicotinoides/toxicidade , Controle Biológico de Vetores/métodos , Praguicidas/toxicidade , Tiazinas/toxicidade , Triazóis/toxicidade , Vespas/efeitos dos fármacos , Agricultura/métodos , Animais , Produtos Agrícolas/parasitologia , Relação Dose-Resposta a Droga , Sinergismo Farmacológico , Ecossistema , Fungicidas Industriais/administração & dosagem , Fungicidas Industriais/toxicidade , Controle de Insetos/métodos , Inseticidas/administração & dosagem , Inseticidas/toxicidade , Neonicotinoides/administração & dosagem , Medição de Risco , Tiazinas/administração & dosagem , Triazóis/administração & dosagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...