Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 8(18): eabm3468, 2022 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-35522743

RESUMO

Ocean memory, the persistence of ocean conditions, is a major source of predictability in the climate system beyond weather time scales. We show that ocean memory, as measured by the year-to-year persistence of sea surface temperature anomalies, is projected to steadily decline in the coming decades over much of the globe. This global decline in ocean memory is predominantly driven by shoaling of the upper-ocean mixed layer depth in response to global surface warming, while thermodynamic and dynamic feedbacks can contribute substantially regionally. As the mixed layer depth shoals, stochastic forcing becomes more effective in driving sea surface temperature anomalies, increasing high-frequency noise at the expense of persistent signals. Reduced ocean memory results in shorter lead times of skillful persistence-based predictions of sea surface thermal conditions, which may present previously unknown challenges for predicting climate extremes and managing marine biological resources under climate change.

2.
Curr Clim Change Rep ; 5(4): 372-389, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31929963

RESUMO

PURPOSE OF REVIEW: Stationary waves are planetary-scale longitudinal variations in the time-averaged atmospheric circulation. Here, we consider the projected response of Northern Hemisphere stationary waves to climate change in winter and summer. We discuss how the response varies across different metrics, identify robust responses, and review proposed mechanisms. RECENT FINDINGS: Climate models project shifts in the prevailing wind patterns, with corresponding impacts on regional precipitation, temperature, and extreme events. Recent work has improved our understanding of the links between stationary waves and regional climate and identified robust stationary wave responses to climate change, which include an increased zonal lengthscale in winter, a poleward shift of the wintertime circulation over the Pacific, a weakening of monsoonal circulations, and an overall weakening of stationary wave circulations, particularly their divergent component and quasi-stationary disturbances. SUMMARY: Numerous factors influence Northern Hemisphere stationary waves, and mechanistic theories exist for only a few aspects of the stationary wave response to climate change. Idealized studies have proven useful for understanding the climate responses of particular atmospheric circulation features and should be a continued focus of future research.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA