Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Pest Manag Sci ; 78(10): 4166-4172, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35686298

RESUMO

BACKGROUND: Bacillus thuringiensis (Bt) crops have been adopted worldwide, providing high-level protection from insect pests. Furthermore, Bt crops preserve natural enemies, promote higher yield, and economically benefit farmers. Although regional pest suppression by widespread Bt crop adoption has been observed in temperate regions, this possibility remains uncertain in tropical areas due to the high diversity of alternative hosts and mild winters. RESULTS: Evidence of regional reduction in insecticide use across areas was observed in Brazil where Cry1Ac soybean has been grown since 2013, with up to 50% reduction in the number of insecticide sprays for managing lepidopteran pests on non-Bt soybean observed at specific locations from 2012 to 2019. Pest monitoring data from four mesoregions across 5 years of commercial plantings of Cry1Ac soybean from December 2014 to July 2019 showed reduced numbers of Chrysodeixis includens moths captured in pheromone traps across years at all locations. The number of Helicoverpa spp. moths captured also was reduced at three locations. CONCLUSION: We provide evidence for regional suppression of lepidopteran pests and reduced insecticide use with the widespread adoption of Cry1Ac soybean in Brazil, bringing economic, social and environmental benefits. © 2022 Society of Chemical Industry.


Assuntos
Bacillus thuringiensis , Inseticidas , Mariposas , Agricultura , Animais , Bacillus thuringiensis/genética , Proteínas de Bactérias/genética , Produtos Agrícolas , Endotoxinas , Proteínas Hemolisinas/genética , Controle Biológico de Vetores , Plantas Geneticamente Modificadas , Glycine max/genética
2.
Sci Rep ; 11(1): 21323, 2021 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-34716388

RESUMO

Widespread adoption of MON 87701 × MON 89788 soybean, expressing Cry1Ac Bt protein and glyphosate tolerance, has been observed in Brazil. A proactive program was implemented to phenotypically and genotypically monitor Cry1Ac resistance in Chrysodeixis includens (Walker). Recent cases of unexpected injury in MON 87701 × MON 89788 soybean were investigated and a large-scale sampling of larvae on commercial soybean fields was performed to assess the efficacy of this technology and the distribution of lepidopteran pests in Brazil. No significant shift in C. includens susceptibility to Cry1Ac was observed eight years after commercial introduction of this technology in Brazil. F2 screen results confirmed that the frequency of Cry1Ac resistance alleles remains low and stable in C. includens. Unexpected injury caused by Rachiplusia nu (Guenée) and Crocidosema aporema (Walsingham) in MON 87701 × MON 89788 soybean was detected during the 2020/21 season, and studies confirmed a genetically based alteration in their susceptibility to Cry1Ac. MON 87701 × MON 89788 soybean remains effective against Anticarsia gemmatalis (Hübner), C. includens, Chloridea virescents (Fabricius) and Helicoverpa armigera (Hübner) in Brazil. However, there is evidence of field-evolved resistance to MON 87701 × MON 89788 soybean by the secondary soybean pests R. nu and C. aporema.


Assuntos
Glycine max/genética , Mariposas/genética , Plantas Geneticamente Modificadas , Animais , Toxinas de Bacillus thuringiensis/genética , Brasil , Endotoxinas/genética , Proteínas Hemolisinas/genética , Resistência a Inseticidas/genética , Larva/genética , Controle Biológico de Vetores/métodos
3.
Sci Rep ; 11(1): 15956, 2021 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-34354186

RESUMO

The soybean technology MON 87701 × MON 89788, expressing Cry1Ac and conferring tolerance to glyphosate, has been widely adopted in Brazil since 2013. However, pest shifts or resistance evolution could reduce the benefits of this technology. To assess Cry1Ac soybean performance and understand the composition of lepidopteran pest species attacking soybeans, we implemented large-scale sampling of larvae on commercial soybean fields during the 2019 and 2020 crop seasons to compare with data collected prior to the introduction of Cry1Ac soybeans. Chrysodeixis includens was the main lepidopteran pest in non-Bt fields. More than 98% of larvae found in Cry1Ac soybean were Spodoptera spp., although the numbers of Spodoptera were similar between Cry1Ac soybean and non-Bt fields. Cry1Ac soybean provided a high level of protection against Anticarsia gemmatalis, C. includens, Chloridea virescens and Helicoverpa spp. Significant reductions in insecticide sprays for lepidopteran control in soybean were observed from 2012 to 2019. Our study showed that C. includens and A. gemmatalis continue to be primary lepidopteran pests of soybean in Brazil and that Cry1Ac soybean continues to effectively manage the target lepidopteran pests. However, there was an increase in the relative abundance of non-target Spodoptera spp. larvae in both non-Bt and Cry1Ac soybeans.


Assuntos
Glycine max/genética , Lepidópteros/genética , Controle Biológico de Vetores/métodos , Animais , Toxinas de Bacillus thuringiensis/genética , Proteínas de Bactérias/genética , Brasil , Endotoxinas/metabolismo , Proteínas Hemolisinas/genética , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Inseticidas , Larva/efeitos dos fármacos , Lepidópteros/patogenicidade , Mariposas/efeitos dos fármacos , Plantas Geneticamente Modificadas/genética , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo
4.
Pest Manag Sci ; 74(4): 905-913, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29095565

RESUMO

BACKGROUND: Maize technologies expressing Bacillus thuringiensis (Bt) insecticidal proteins are widely used in Argentina to control sugarcane borer (Diatraea saccharalis Fabricius). Unexpected D. saccharalis damage was observed to Bt maize events TC1507 (expressing Cry1F) and MON 89034 × MON 88017 (expressing Cry1A.105 and Cry2Ab2) in an isolated area of San Luis Province. Diatraea saccharalis larvae were sampled from MON 89034 × MON 88017 fields in the area to generate a resistant strain (RR), which was subsequently characterized in plant and diet bioassays. RESULTS: Survivorship of the RR strain was high on TC1507 leaf tissue, intermediate on MON 89034 × MON 88017, and low on MON 810 (expressing Cry1Ab). The RR strain had high resistance to Cry1A.105 (186.74-fold) and no resistance to Cry2Ab2 in diet bioassays. These results indicate resistance to Cry1F and Cry1A.105 (and likely cross-resistance between them) but not to Cry1Ab or Cry2Ab2. Resistance to MON 89034 × MON 88017 was functionally recessive. Reviews of grower records suggest that resistance initially evolved to Cry1F, conferring cross-resistance to Cry1A.105, with low refuge compliance as the primary cause. A mitigation plan was implemented in San Luis that included technology rotation, field monitoring, and grower education on best management practices (BMPs) including refuges. CONCLUSION: In the affected area, the resistance to Cry1F and Cry1A.105 is being managed effectively through use of MON 89034 × MON 88017 and MON 810 in combination with BMPs, and no spread of resistance to other regions has been observed. © 2017 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Assuntos
Bacillus thuringiensis/química , Proteínas de Bactérias/farmacologia , Endotoxinas/farmacologia , Proteínas Hemolisinas/farmacologia , Resistência a Inseticidas , Mariposas/efeitos dos fármacos , Zea mays/fisiologia , Animais , Argentina , Toxinas de Bacillus thuringiensis , Larva/efeitos dos fármacos , Larva/crescimento & desenvolvimento , Mariposas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/fisiologia , Zea mays/genética
5.
Pest Manag Sci ; 72(9): 1727-36, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26617261

RESUMO

BACKGROUND: The first Bt maize in Brazil was launched in 2008 and contained the MON 810 event, which expresses Cry1Ab protein. Although the Cry1Ab dose in MON 810 is not high against fall armyworm (FAW), Spodoptera frugiperda (J.E. Smith), MON 810 provided commercial levels of control. To support insect resistance management in Brazil, the baseline and ongoing susceptibility of FAW was examined using protein bioassays, and the level of control and life history parameters of FAW were evaluated on MON 810 maize. RESULTS: Baseline diet overlay assays with Cry1Ab (16 µg cm(-2) ) caused 76.3% mortality to field FAW populations sampled in 2009. Moderate mortality (48.8%) and significant growth inhibition (88.4%) were verified in leaf-disc bioassays. In greenhouse trials, MON 810 had significantly less damage than non-Bt maize. The surviving FAW larvae on MON 810 (22.4%) had a 5.5 day increase in life cycle time and a 24% reduction in population growth rate. Resistance monitoring (2010-2015) showed a significant reduction in Cry1Ab susceptibility of FAW over time. Additionally, a significant reduction in the field efficacy of MON 810 maize against FAW was observed in different regions from crop season 2009 to 2013. CONCLUSIONS: The decrease in susceptibility to Cry1Ab was expected, but the specific contributions to this resistance by MON 810 maize cannot be distinguished from cross-resistance to Cry1Ab caused by exposure to Cry1F maize. Technologies combining multiple novel insecticidal traits with no cross-resistance to the current Cry1 proteins and high activity against the same target pests should be pursued in Brazil and similar environments. © 2015 Society of Chemical Industry.


Assuntos
Proteínas de Bactérias/farmacologia , Evolução Biológica , Endotoxinas/farmacologia , Proteínas Hemolisinas/farmacologia , Resistência a Inseticidas , Inseticidas/farmacologia , Spodoptera/efeitos dos fármacos , Zea mays/genética , Animais , Bacillus thuringiensis/genética , Toxinas de Bacillus thuringiensis , Brasil , Larva/efeitos dos fármacos , Larva/crescimento & desenvolvimento , Larva/fisiologia , Plantas Geneticamente Modificadas/genética , Spodoptera/crescimento & desenvolvimento , Spodoptera/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA