Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Cancer Res ; 22(2): 209-220, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-37847239

RESUMO

The transcription factor, SOX10, plays an important role in the differentiation of neural crest precursors to the melanocytic lineage. Malignant transformation of melanocytes leads to the development of melanoma, and SOX10 promotes melanoma cell proliferation and tumor formation. SOX10 expression in melanomas is heterogeneous, and loss of SOX10 causes a phenotypic switch toward an invasive, mesenchymal-like cell state and therapy resistance; hence, strategies to target SOX10-deficient cells are an active area of investigation. The impact of cell state and SOX10 expression on antitumor immunity is not well understood but will likely have important implications for immunotherapeutic interventions. To this end, we tested whether SOX10 status affects the response to CD8+ T cell-mediated killing and T cell-secreted cytokines, TNFα and IFNγ, which are critical effectors in the cytotoxic killing of cancer cells. We observed that genetic ablation of SOX10 rendered melanoma cells more sensitive to CD8+ T cell-mediated killing and cell death induction by either TNFα or IFNγ. Cytokine-mediated cell death in SOX10-deficient cells was associated with features of caspase-dependent pyroptosis, an inflammatory form of cell death that has the potential to increase immune responses. IMPLICATIONS: These data support a role for SOX10 expression altering the response to T cell-mediated cell death and contribute to a broader understanding of the interaction between immune cells and melanoma cells.


Assuntos
Melanoma , Humanos , Melanoma/patologia , Citocinas , Fator de Necrose Tumoral alfa , Morte Celular , Fatores de Transcrição SOXE/genética , Fatores de Transcrição SOXE/metabolismo
2.
Mol Cancer Ther ; 22(9): 1087-1099, 2023 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-37343247

RESUMO

Drug tolerance and minimal residual disease (MRD) are likely to prelude acquired resistance to targeted therapy. Mechanisms that allow persister cells to survive in the presence of targeted therapy are being characterized but selective vulnerabilities for these subpopulations remain uncertain. We identified cellular inhibitor of apoptosis protein 2 (cIAP2) as being highly expressed in SOX10-deficient drug tolerant persister (DTP) melanoma cells. Here, we show that cIAP2 is sufficient to induce tolerance to MEK inhibitors, likely by decreasing the levels of cell death. Mechanistically, cIAP2 is upregulated at the transcript level in SOX10-deficient cells and the AP-1 complex protein, JUND, is required for its expression. Using a patient-derived xenograft model, we demonstrate that treatment with the cIAP1/2 inhibitor, birinapant, during the MRD phase delays the onset of resistance to BRAF inhibitor and MEK inhibitor combination therapy. Together, our data suggest that cIAP2 upregulation in SOX10-deficient subpopulations of melanoma cells induces drug tolerance to MAPK targeting agents and provides a rationale to test a novel therapeutical approach to target MRD.


Assuntos
Melanoma , Humanos , Linhagem Celular Tumoral , Melanoma/tratamento farmacológico , Melanoma/genética , Melanoma/metabolismo , Proteínas Inibidoras de Apoptose/genética , Proteínas Inibidoras de Apoptose/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Proteínas Proto-Oncogênicas B-raf/metabolismo , Resistencia a Medicamentos Antineoplásicos/genética , Fatores de Transcrição SOXE/genética
3.
Mol Cancer Res ; 20(12): 1811-1821, 2022 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-36044013

RESUMO

Lack of response and acquired resistance continue to be limitations of targeted and immune-based therapies. Pyroptosis is an inflammatory form of cell death characterized by the release of inflammatory damage-associated molecular patterns (DAMP) and cytokines via gasdermin (GSDM) protein pores in the plasma membrane. Induction of pyroptosis has implications for treatment strategies in both therapy-responsive, as well as resistance forms of melanoma. We show that the caspase-3 activator, raptinal, induces pyroptosis in both human and mouse melanoma cell line models and delays tumor growth in vivo. Release of DAMPs and inflammatory cytokines was dependent on caspase activity and GSDME expression. Furthermore, raptinal stimulated pyroptosis in melanoma models that have acquired resistance to BRAF and MEK inhibitor therapy. These findings add support to efforts to induce pyroptosis in both the treatment-naïve and resistant settings. IMPLICATIONS: Raptinal can rapidly induce pyroptosis in naïve and BRAFi plus MEKi-resistant melanoma, which may be beneficial for patients who have developed acquired resistance to targeted therapies.


Assuntos
Melanoma , Piroptose , Camundongos , Animais , Humanos , Piroptose/fisiologia , Melanoma/tratamento farmacológico , Melanoma/genética , Melanoma/metabolismo , Ciclopentanos , Citocinas
4.
Cancer Res ; 82(14): 2625-2639, 2022 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-35657206

RESUMO

Melanomas frequently harbor activating NRAS mutations. However, limited advance has been made in developing targeted therapy options for patients with NRAS mutant melanoma. MEK inhibitors (MEKi) show modest efficacy in the clinic and their actions need to be optimized. In this study, we performed a genome-wide CRISPR-Cas9-based screen and demonstrated that loss of phosphoinositide-dependent kinase-1 (PDPK1) enhances the efficacy of MEKi. The synergistic effects of PDPK1 loss and MEKi was validated in NRAS mutant melanoma cell lines using pharmacologic and molecular approaches. Combined PDPK1 inhibitors (PDPK1i) with MEKi suppressed NRAS mutant xenograft growth and induced gasdermin E-associated pyroptosis. In an immune-competent allograft model, PDPK1i+MEKi increased the ratio of intratumoral CD8+ T cells, delayed tumor growth, and prolonged survival; the combination treatment was less effective against tumors in immune-deficient mice. These data suggest PDPK1i+MEKi as an efficient immunostimulatory strategy against NRAS mutant melanoma. SIGNIFICANCE: Targeting PDPK1 stimulates antitumor immunity and sensitizes NRAS mutant melanoma to MEK inhibition, providing rationale for the clinical development of a combinatorial approach for treating patients with melanoma.


Assuntos
GTP Fosfo-Hidrolases , MAP Quinase Quinase 1/antagonistas & inibidores , MAP Quinase Quinase 2/antagonistas & inibidores , Melanoma , 1-Fosfatidilinositol 4-Quinase/genética , Proteínas Quinases Dependentes de 3-Fosfoinositídeo , Animais , Linhagem Celular Tumoral , GTP Fosfo-Hidrolases/genética , Humanos , Melanoma/tratamento farmacológico , Melanoma/genética , Melanoma/patologia , Proteínas de Membrana/genética , Camundongos , Quinases de Proteína Quinase Ativadas por Mitógeno , Mutação , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Proto-Oncogênicas B-raf/genética
5.
Cancer Discov ; 11(2): 266-281, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33451983

RESUMO

Unleashing the immune system with immune checkpoint inhibitors (ICI) has significantly improved overall survival for subsets of patients with stage III/IV cancer. However, many tumors are nonresponsive to ICIs, in part due to a lack of tumor-infiltrating lymphocytes (TIL). Converting these immune "cold" tumors to "hot" tumors that are thus more likely to respond to ICIs is a major obstacle for cancer treatment. Triggering inflammatory forms of cell death, such as necroptosis and pyroptosis, may alter the tumor immune microenvironment and the influx of TILs. We present an emerging view that promoting tumor-localized necroptosis and pyroptosis may ultimately enhance responses to ICI. SIGNIFICANCE: Many tumor types respond poorly to ICIs or respond but subsequently acquire resistance. Effective therapies for ICI-nonresponsive tumors are lacking and should be guided by evidence from preclinical studies. Promoting inflammatory cell death mechanisms within the tumor may alter the local immune microenvironment toward an ICI-responsive state.


Assuntos
Antineoplásicos Imunológicos/uso terapêutico , Neoplasias/terapia , Antineoplásicos Imunológicos/farmacologia , Humanos , Imunoterapia , Microambiente Tumoral/efeitos dos fármacos
6.
Cancer Immunol Res ; 8(9): 1114-1121, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32661093

RESUMO

Concurrent MEK and CDK4/6 inhibition shows promise in clinical trials for patients with advanced-stage mutant BRAF/NRAS solid tumors. The effects of CDK4/6 inhibitor (CDK4/6i) in combination with BRAF/MEK-targeting agents on the tumor immune microenvironment are unclear, especially in melanoma, for which immune checkpoint inhibitors are effective in approximately 50% of patients. Here, we show that patients progressing on CDK4/6i/MEK pathway inhibitor combinations exhibit T-cell exclusion. We found that MEK and CDK4/6 targeting was more effective at delaying regrowth of mutant BRAF melanoma in immunocompetent versus immune-deficient mice. Although MEK inhibitor (MEKi) treatment increased tumor immunogenicity and intratumoral recruitment of CD8+ T cells, the main effect of CDK4/6i alone and in combination with MEKi was increased expression of CD137L, a T-cell costimulatory molecule on immune cells. Depletion of CD8+ T cells or blockade of the CD137 ligand-receptor interaction reduced time to regrowth of melanomas in the context of treatment with CDK4/6i plus MEKi treatment in vivo Together, our data outline an antitumor immune-based mechanism and show the efficacy of targeting both the MEK pathway and CDK4/6.


Assuntos
Acrilonitrila/análogos & derivados , Compostos de Anilina/uso terapêutico , Linfócitos T CD8-Positivos/efeitos dos fármacos , Quinase 4 Dependente de Ciclina/antagonistas & inibidores , Quinase 6 Dependente de Ciclina/antagonistas & inibidores , Acrilonitrila/farmacologia , Acrilonitrila/uso terapêutico , Compostos de Anilina/farmacologia , Animais , Humanos , Masculino , Camundongos
7.
J Immunol ; 204(11): 2961-2972, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32284333

RESUMO

CMV has been proposed to play a role in cancer progression and invasiveness. However, CMV has been increasingly studied as a cancer vaccine vector, and multiple groups, including ours, have reported that the virus can drive antitumor immunity in certain models. Our previous work revealed that intratumoral injections of wild-type murine CMV (MCMV) into B16-F0 melanomas caused tumor growth delay in part by using a viral chemokine to recruit macrophages that were subsequently infected. We now show that MCMV acts as a STING agonist in the tumor. MCMV infection of tumors in STING-deficient mice resulted in normal recruitment of macrophages to the tumor, but poor recruitment of CD8+ T cells, reduced production of inflammatory cytokines and chemokines, and no delay in tumor growth. In vitro, expression of type I IFN was dependent on both STING and the type I IFNR. Moreover, type I IFN alone was sufficient to induce cytokine and chemokine production by macrophages and B16 tumor cells, suggesting that the major role for STING activation was to produce type I IFN. Critically, viral infection of wild-type macrophages alone was sufficient to restore tumor growth delay in STING-deficient animals. Overall, these data show that MCMV infection and sensing in tumor-associated macrophages through STING signaling is sufficient to promote antitumor immune responses in the B16-F0 melanoma model.


Assuntos
Infecções por Herpesviridae/imunologia , Melanoma/imunologia , Proteínas de Membrana/metabolismo , Muromegalovirus/fisiologia , Neoplasias Cutâneas/imunologia , Macrófagos Associados a Tumor/imunologia , Animais , Movimento Celular , Modelos Animais de Doenças , Humanos , Imunidade/genética , Interferon Tipo I/metabolismo , Melanoma/virologia , Melanoma Experimental , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neoplasias Cutâneas/virologia , Carga Tumoral , Microambiente Tumoral
8.
J Virol ; 93(20)2019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-31375579

RESUMO

Cytomegalovirus (CMV) is a ubiquitous betaherpesvirus that infects many different cell types. Human CMV (HCMV) has been found in several solid tumors, and it has been hypothesized that it may promote cellular transformation or exacerbate tumor growth. Paradoxically, in some experimental situations, murine CMV (MCMV) infection delays tumor growth. We previously showed that wild-type MCMV delayed the growth of poorly immunogenic B16 melanomas via an undefined mechanism. Here, we show that MCMV delayed the growth of these immunologically "cold" tumors by recruiting and modulating tumor-associated macrophages. Depletion of monocytic phagocytes with clodronate completely prevented MCMV from delaying tumor growth. Mechanistically, our data suggest that MCMV recruits new macrophages to the tumor via the virus-encoded chemokine MCK2, and viruses lacking this chemokine were unable to delay tumor growth. Moreover, MCMV infection of macrophages drove them toward a proinflammatory (M1)-like state. Importantly, adaptive immune responses were also necessary for MCMV to delay tumor growth as the effect was substantially blunted in Rag-deficient animals. However, viral spread was not needed and a spread-defective MCMV strain was equally effective. In most mice, the antitumor effect of MCMV was transient. Although the recruited macrophages persisted, tumor regrowth correlated with a loss of viral activity in the tumor. However, an additional round of MCMV infection further delayed tumor growth, suggesting that tumor growth delay was dependent on active viral infection. Together, our results suggest that MCMV infection delayed the growth of an immunologically cold tumor by recruiting and modulating macrophages in order to promote anti-tumor immune responses.IMPORTANCE Cytomegalovirus (CMV) is an exciting new platform for vaccines and cancer therapy. Although CMV may delay tumor growth in some settings, there is also evidence that CMV may promote cancer development and progression. Thus, defining the impact of CMV on tumors is critical. Using a mouse model of melanoma, we previously found that murine CMV (MCMV) delayed tumor growth and activated tumor-specific immunity although the mechanism was unclear. We now show that MCMV delayed tumor growth through a mechanism that required monocytic phagocytes and a viral chemokine that recruited macrophages to the tumor. Furthermore, MCMV infection altered the functional state of macrophages. Although the effects of MCMV on tumor growth were transient, we found that repeated MCMV injections sustained the antitumor effect, suggesting that active viral infection was needed. Thus, MCMV altered tumor growth by actively recruiting macrophages to the tumor, where they were modulated to promote antitumor immunity.


Assuntos
Infecções por Citomegalovirus/complicações , Infecções por Citomegalovirus/imunologia , Melanoma/imunologia , Melanoma/patologia , Muromegalovirus/imunologia , Fagócitos/imunologia , Fagócitos/patologia , Animais , Melanoma/complicações , Melanoma/mortalidade , Melanoma Experimental , Camundongos , Camundongos Knockout , Monócitos/imunologia , Monócitos/metabolismo , Monócitos/patologia , Taxa de Sobrevida , Carga Tumoral
9.
Vaccines (Basel) ; 7(3)2019 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-31323930

RESUMO

Cytomegalovirus (CMV) is a herpesvirus that establishes a persistent, but generally asymptomatic, infection in most people in the world. However, CMV drives and sustains extremely large numbers of antigen-specific T cells and is, therefore, emerging as an exciting platform for vaccines against infectious diseases and cancer. Indeed, pre-clinical data strongly suggest that CMV-based vaccines can sustain protective CD8+ T cell and antibody responses. In the context of vaccines for infectious diseases, substantial pre-clinical studies have elucidated the efficacy and protective mechanisms of CMV-based vaccines, including in non-human primate models of various infections. In the context of cancer vaccines, however, much less is known and only very early studies in mice have been conducted. To develop CMV-based cancer vaccines further, it will be critical to better understand the complex interaction of CMV and cancer. An array of evidence suggests that naturally-acquired human (H)CMV can be detected in cancers, and it has been proposed that HCMV may promote tumor growth. This would obviously be a concern for any therapeutic cancer vaccines. In experimental models, CMV has been shown to play both positive and negative roles in tumor progression, depending on the model studied. However, the mechanisms are still largely unknown. Thus, more studies assessing the interaction of CMV with the tumor microenvironment are needed. This review will summarize the existing literature and major open questions about CMV-based vaccines for cancer, and discuss our hypothesis that the balance between pro-tumor and anti-tumor effects driven by CMV depends on the location and the activity of the virus in the lesion.

10.
Front Oncol ; 8: 324, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30211114

RESUMO

Head and neck squamous cell carcinoma (HNSCC) is the 6th most common human cancer and affects approximately 50,000 new patients every year in the US. The major risk factors for HNSCC are tobacco and alcohol consumption as well as oncogenic HPV infections. Despite advances in therapy, the overall survival rate for all-comers is only 50%. Understanding the biology of HNSCC is crucial to identifying new biomarkers, implementing early diagnostic approaches and developing novel therapies. As in several other cancers, HNSCC expresses elevated levels of MCT4, a member of the SLC16 family of monocarboxylate transporters. MCT4 is a H+-linked lactate transporter which functions to facilitate lactate efflux from highly glycolytic cells. High MCT4 levels in HNSCC have been associated with poor prognosis, but the role of MCT4 in the development and progression of this cancer is still poorly understood. In this study, we used 4-nitroquinoline-1-oxide (4NQO) to induce oral cancer in MCT4-/- and wild type littermates, recapitulating the disease progression in humans. Histological analysis of mouse tongues after 23 weeks of 4NQO treatment showed that MCT4-/- mice developed significantly fewer and less extended invasive lesions than wild type. In mice, as in human samples, MCT4 was not expressed in normal oral mucosa but was detected in the transformed epithelium. In the 4NQO treated mice we detected MCT4 in foci of the basal layer undergoing transformation, and progressively in areas of carcinoma in situ and invasive carcinomas. Moreover, we found MCT4 positive macrophages within the tumor and in the stroma surrounding the lesions in both human samples of HNSCC and in the 4NQO treated animals. The results of our studies showed that MCT4 could be used as an early diagnostic biomarker of HNSCC. Our finding with the MCT4-/- mice suggest MCT4 is a driver of progression to oral squamous cell cancer and MCT4 inhibitors could have clinical benefits for preventing invasive HNSCC.

11.
Hum Vaccin Immunother ; 13(8): 1778-1785, 2017 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-28604162

RESUMO

Cytomegalovirus (CMV) is a herpesvirus that induces an extremely robust and sustained immune response. For this reason, CMV has been proposed as a vaccine vector to promote immunity to both pathogens and cancer. However, exploration of CMV as a vaccine vector is at an early stage and there are many questions. Using a mouse melanoma model, we recently found that a CMV-based vaccine induced large populations of melanoma-specific T cells, but was not effective at slowing tumor growth unless it was injected directly into the tumor. These surprising results have led us to hypothesize that CMV may be adept at modulating the tumor micro-environment through its infection of macrophages. Importantly, injection of CMV into the growing tumor synergized with blockade of the PD-1 checkpoint to clear well-established tumors. Here, we discuss our results in the context of CMV-based vaccines for pathogens and cancer.


Assuntos
Citomegalovirus/imunologia , Macrófagos/imunologia , Macrófagos/virologia , Melanoma Experimental/imunologia , Microambiente Tumoral , Animais , Linfócitos T CD8-Positivos/imunologia , Vacinas Anticâncer/imunologia , Citomegalovirus/fisiologia , Infecções por Citomegalovirus/imunologia , Vacinas contra Citomegalovirus/administração & dosagem , Vacinas contra Citomegalovirus/imunologia , Epitopos de Linfócito T/imunologia , Humanos , Melanoma Experimental/virologia , Camundongos , Receptor de Morte Celular Programada 1/imunologia
12.
J Immunol ; 198(7): 2979-2988, 2017 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-28202614

RESUMO

It is well known that CD8+ tumor-infiltrating lymphocytes (TILs) are correlated with positive prognoses in cancer patients and are used to determine the efficacy of immune therapies. Although it is generally assumed that CD8+ TILs will be tumor-associated Ag (TAA) specific, it is unknown whether CD8+ T cells with specificity for common pathogens also infiltrate tumors. If so, the presence of these T cells could alter the interpretation of prognostic and diagnostic TIL assays. We compared TAA-specific and virus-specific CD8+ T cells in the same tumors using murine CMV, a herpesvirus that causes a persistent/latent infection, and vaccinia virus, a poxvirus that is cleared by the host. Virus-specific CD8+ TILs migrated into cutaneous melanoma lesions during acute infection with either virus, after a cleared vaccinia virus infection, and during a persistent/latent murine CMV infection. Virus-specific TILs developed independently of viral Ag in the tumor and, interestingly, expressed low or intermediate levels of full-length PD-1 in the tumor environment. Importantly, PD-1 expression could be markedly induced by Ag but did not correlate with dysfunction for virus-specific TILs, in sharp contrast to TAA-specific TILs in the same tumors. These data suggest that CD8+ TILs can reflect an individual's immune status, rather than exclusively representing TAA-specific T cells, and that PD-1 expression on CD8+ TILs is not always associated with repeated Ag encounter or dysfunction. Thus, functional virus-specific CD8+ TILs could skew the results of prognostic or diagnostic TIL assays.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Linfócitos do Interstício Tumoral/imunologia , Melanoma Experimental/imunologia , Viroses/complicações , Transferência Adotiva , Animais , Antígenos de Neoplasias/imunologia , Citometria de Fluxo , Infecções por Herpesviridae/complicações , Infecções por Herpesviridae/imunologia , Melanoma Experimental/complicações , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Muromegalovirus/imunologia , Reação em Cadeia da Polimerase , Receptor de Morte Celular Programada 1/biossíntese , Receptor de Morte Celular Programada 1/imunologia , Vacínia/complicações , Vacínia/imunologia , Vaccinia virus/imunologia , Viroses/imunologia
13.
Mol Ther ; 24(8): 1444-55, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27434584

RESUMO

Cytomegalovirus is an attractive cancer vaccine platform because it induces strong, functional CD8(+) T-cell responses that accumulate over time and migrate into most tissues. To explore this, we used murine cytomegalovirus expressing a modified gp100 melanoma antigen. Therapeutic vaccination by the intraperitoneal and intradermal routes induced tumor infiltrating gp100-specific CD8(+) T-cells, but provided minimal benefit for subcutaneous lesions. In contrast, intratumoral infection of established tumor nodules greatly inhibited tumor growth and improved overall survival in a CD8(+) T-cell-dependent manner, even in mice previously infected with murine cytomegalovirus. Although murine cytomegalovirus could infect and kill B16F0s in vitro, infection was restricted to tumor-associated macrophages in vivo. Surprisingly, the presence of a tumor antigen in the virus only slightly increased the efficacy of intratumoral infection and tumor-specific CD8(+) T-cells in the tumor remained dysfunctional. Importantly, combining intratumoral murine cytomegalovirus infection with anti-PD-L1 therapy was synergistic, resulting in tumor clearance from over half of the mice and subsequent protection against tumor challenge. Thus, while a murine cytomegalovirus-based vaccine was poorly effective against established subcutaneous tumors, direct infection of tumor nodules unexpectedly delayed tumor growth and synergized with immune checkpoint blockade to promote tumor clearance and long-term protection.


Assuntos
Anticorpos Monoclonais/farmacologia , Antineoplásicos/farmacologia , Antígeno B7-H1/antagonistas & inibidores , Imunidade , Melanoma Experimental/imunologia , Melanoma Experimental/metabolismo , Muromegalovirus/fisiologia , Animais , Vacinas Anticâncer/genética , Vacinas Anticâncer/imunologia , Terapia Combinada , Expressão Gênica , Ordem dos Genes , Genes Reporter , Vetores Genéticos/administração & dosagem , Vetores Genéticos/genética , Imunoterapia , Macrófagos/imunologia , Macrófagos/metabolismo , Melanoma Experimental/patologia , Melanoma Experimental/terapia , Camundongos , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Resultado do Tratamento , Carga Tumoral , Vacinação , Antígeno gp100 de Melanoma/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...